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A comprehensive model for the optical transmission for determining the optimal 

thickness and figure of merit of Al-doped ZnO films as transparent conducting 

coatings 

 

Abstract 

In this work a comprehensive model for the optical transmission as a function of wavelength 

and thickness of ZnO:Al films deposited on glass substrates by ultrasonic spray pyrolysis, is 

worked out. The mathematical expression developed for the transmission of the transparent 

conducting film on a transparent substrate, considers: 1) the interference effects of multiple 

specular reflections of coherent light from the front and the back of the flat-parallel-sided 

interfaces film-air and film-glass substrate, 2) the contribution of free carrier concentration 

(electrons in the conduction band due to Al doping) to the weak absorption in the visible and 

near-infrared range, 3) the Urbach tail absorption edge at the low wavelength region (< 400 

nm), 4) the effect of surface diffuse scattering of light originated by the roughness of these 

interfaces on the specular reflection and transmission coefficients. The wavelength 

dependence of the coefficients of reflection and transmission, and the absorption coefficient 

of the ZnO:Al film in the low absorption-visible region (400-800 nm), were calculated from 

the formulas derived for the refractive index and extinction coefficient by using a Lorentz-

Drude expression to separate the contribution of the bound-electrons and free-electrons, 

respectively, to the complex dielectric function. The carrier concentration and dc-electrical 

conductivity of the ZnO:Al films were measured. The fitting of the semi-empirical formula 

for the optical transmission with the experimental transmission spectrum was quite good and 

the effects of the different parameters involved in the model was evidenced. Finally, we show 

that the formulas derived here for the optical transmission can be used for a more precise 

determination of previously defined figures of merit for these type of films for their use as 

transparent conductive electrodes as a function of thickness of ZnO:Al. We discuss the 

correctness of the figures of merits considered and the usefulness of the model for selecting 

the optimal thickness for a transparent conductive contact. 
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I. Introduction 

Recently, aluminum-doped zinc oxide (ZnO:Al or AZO) thin films deposited by different 

techniques, have received much attention as transparent conductive coatings (TCCs) for a 

wide variety of optoelectronic devices such as electroluminescent flat panel displays, solar 

cells, ultraviolet sensors, etc. [1] [2] [3][4][5][6][7][8][9][10]. For optimal applications of 

these films as TCCs the optical transmission should be as high as possible but at the same 

time the sheet resistance should be as low as possible. A common parameter that has been 

used to evaluate the quality of diverse TCCs deposited on transparent substrates (such as 

borosilicate, corning or vitreous silica slides), is the figure of merit defined originally by 

Fraser and Cook [11] as: 

                                                               𝐹 =
𝑇

𝑅𝑠
                                                                    (1) 

where 𝑇  is the average transmission in the visible wavelength range (400 - 800 nm) and 𝑅𝑠 

is the sheet resistance defined by 𝑅𝑠 =
1

 𝜎𝑜𝑙
 , where 𝜎𝑜  is the dc electrical conductivity in 

Ω
−1𝑐𝑚−1  and 𝑙 is the thickness of the TCC in 𝑐𝑚. According to this definition, the ideal 

TCC should have a figure of merit with a maximum value. However, since both parameters, 

𝑇 and 𝑅𝑠, depend on the TCC thickness an important question to solve has been whether 

there is an optimal film thickness for which a maximum figure of merit occurs, and how it 

can be calculated. An attempt to solve this question was made by Haacke [12], by using the 

Beer’s law for expressing the optical transmission of a TCC film in its simplest form as: 𝑇𝐵 =
𝑒−𝛼𝑙, where 𝛼 is the optical absorption coefficient in 𝑐𝑚−1. In this case the figure of merit 

was also expressed as a function of 𝑙 in a simple form as: 𝐹𝐵 = 𝜎𝑜𝑙𝑒−𝛼𝑙. According to this 

formula it is easily found that the figure of merit of a TCC with a given 𝜎𝑜 and 𝛼 achieves a 

maximum value at 𝑙𝑚 = 1/𝛼, and for this thickness the sheet resistance is 𝑅𝑠 = 𝛼/𝜎𝑜 and 

the transmission is 𝑇𝐵(𝑙 = 𝑙𝑚) = 𝑒−1 = 0.37.   As can be seen, the use of the simplest 

formula for the optical transmission (𝑇𝐵 = 𝑒−𝛼𝑙), in Eq. 1 for the figure of merit predicts that 

the maximum figure of merit occurs at a film thickness which reduces the optical 

transmission to only 37%, which is unacceptable for most of the applications of a TCC. For 

example for a TCC with a value of 𝛼 = 4 × 102𝑐𝑚−1 and 𝜎𝑜 = 102 Ω−1𝑐𝑚−1, the thickness 

for which a maximum figure of merit (𝐹𝐵𝑚𝑎𝑥 = (𝜎𝑜/𝛼)0.37 = 0.092 Ω−1
) is obtained is: 

𝑙𝑚𝑎𝑥 = 2.5 × 10−3 𝑐𝑚 = 25000 𝑛𝑚, and although this TCC has a very low sheet resistance; 

𝑅𝑠 = 4 Ω/𝑠𝑞𝑢𝑎𝑟𝑒, it is very thick and it has also a very low transmission (0.37). In order to 

solve this problem Haacke redefined the figure of merit by [12]: 

                                                                                𝐹𝐻 =
𝑇10

𝑅𝑠
                                                                    (2) 

In this case using the same Beer’s formula for the optical transmission (𝑇𝐵 = 𝑒−𝛼𝑙), the film 

thickness which maximizes 𝐹𝐻𝐵 = 𝜎𝑜𝑙𝑒−10𝛼𝑙 is now, 𝑙𝑚𝑎𝑥 =
1

10𝛼
, and the transmittance for 

this thickness is 𝑇𝐵 = 𝑒−0.1 = 0.90.   Thus for the same TCC with 𝛼 = 4 × 102𝑐𝑚−1 and 

𝜎𝑜 = 102 Ω−1𝑐𝑚−1, the thickness to obtain the maximum new figure of merit (𝐹𝐻𝐵𝑚𝑎𝑥 =

(
𝜎𝑜

10𝛼
) (0.9)10 = 8.71 × 10−3 Ω−1

), is 𝑙𝑚𝑎𝑥 = 2.5 × 10−4 𝑐𝑚 = 2500 𝑛𝑚 , the 

corresponding sheet resistance is, 𝑅𝑠 = 40 Ω/𝑠𝑞𝑢𝑎𝑟𝑒., and the transmittance should be of 

90%. However this prediction is not realistic because in the practice this TCC is still thick 

and the optical transmission for a TCC with this thickness is typically below 80%. On the 
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other hand, the new maximum figure of merit 𝐹𝐻𝐵𝑚𝑎𝑥   is one order of magnitude lower than 

the original maximum figure of merit: 𝐹𝐵𝑚𝑎𝑥. Thus, although the redefined figure of merit 

has been used in some works to evaluate TCCs [1] [5][8][9] [13], [14], it seems artificial and 

unsatisfactory for determining the optimal thickness of a suitable TCC.  

In order to compare different TCCs, independently of film thickness, other definitions of the 

figure of merit have been made for TCCs with very small thickness and very low optical 

absorption, in terms only of the electrical conductivity and the absorption coefficient [15], 

[16]. However this figure of merit is not valid for thicker or more absorbing films and it does 

not allow adjusting the optimal thickness for a specific application of the TCC.  It is worth 

to mention that in most of the works where the figure of merit has been calculated or predicted 

theoretically, it has been implicitly assumed that 𝛼 is independent of 𝜎𝑜. However, according 

to the Drude-Lorentz model, the optical absorption in a TCC is related with the dc-electrical 

conductivity and/or the free carrier concentration.  

As an important motivation for the present work we realize that the use of the simple Beer’s 

formula (𝑇𝐵 = 𝑒−𝛼𝑙) in the original definition of the figure of merit has given rise to paradox 

results, because it does not express the real dependence of the optical transmission with film 

thickness. We consider that the original definition of the figure of merit given by eq. (1) is 

adequate and can be used in the practice to evaluate the figure of merit of thin and/or thick 

TCCs, whenever the optical transmission be calculated in a more rigorous form, as a function 

of the TCC thickness. So, here we have developed a comprehensive semi-empirical model 

for the optical transmittance (T) of TCC of ZnO:Al films deposited on glass, by ultrasonic 

spray pyrolysis. For the calculation of T, this model considers the multiple reflections at the 

three interfaces (air-coating, coating-substrate, substrate-air) and includes: the interference 

effects of multiple reflections at the coating interfaces, the dispersion formulas for the 

refractive index of the film and substrate, the effect of free electrons concentration and the 

roughness of the film surfaces.  

II. Model for the specular optical transmittance. 

Since the optical transmittance of the films was measured under normal incidence, we used 

the optical configuration of parallel plates shown in Fig. 1, to model the transmission 

coefficient through the ZnO:Al film (𝑇𝐹), and the total transmission coefficient (𝑇) through 

the whole system ZnO:Al/glass substrate (𝑇). As shown in Fig. 1, the refractive index of the 

incident medium (air) is 𝑛0 = 1, the refractive index of the transparent glass substrate is real 

and it is denoted by 𝑛𝑔 = 𝑛𝑔(𝜆), and the complex refractive index of the film is denoted by 

𝑛̃ = 𝑛̃(𝜆) = 𝑛(𝜆) + 𝑖𝜅(𝜆),  where the real part, 𝑛(𝜆)  is called the refractive index and 𝜅(𝜆) 

is the extinction coefficient. Since the ZnO:Al film has a high transparency in the visible 

range (400 -800 nm), in this range we have weak absorption, where |𝜅(𝜆)| ≪ |𝑛(𝜆)|.  
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Figure 1. Optical configuration of a ZnO:Al thin film on a thick finite transparent glass 

substrate. Reprinted with permission from [17] @ Optica Publishing Group. 

Assuming that the thickness 𝑙 of the ZnO:Al film is smaller than the coherence length of the 

light, the interference between multiple reflections inside the film is important [18]. Since 

the film is deposited on the glass substrate, we have to include the effect of the transparent 

substrate (𝛼𝑆 = 0)  in the transmission. The large thickness of the substrate implies the 

incoherent limit, in which there is no interference among the multiple reflecting beams [18]. 

Thus, considering the interference effects in the addition of the electric field of the beams 

transmitted after multiple reflections through the film, and adding the intensities of the 

multiple reflected beams through the substrate, the transmission through the film/substrate 

optical system is (see the appendix A)  [18]: 

                                        𝑇 = [
𝑇3

1−𝑅2
′ 𝑅3

′ ] (
𝑇1𝑇2𝑒−𝛼𝑙

1−2𝑅1
1/2

𝑅2
1/2

 𝑐𝑜𝑠 𝛷𝑒−𝛼𝑙+𝑅1𝑅2 𝑒−2𝛼𝑙
)                                   (3) 

where  𝛼 is the absorption coefficient of the film, Φ = 4𝜋𝑛𝑙/𝜆 is the phase shift due to a 

round-trip of the light wave in the film, 𝜆 is the vaccum wavelength of the light, and 𝑛 is the 

real part of the complex refractive index of the film. 𝑅1 and 𝑅2 are the internal (inside the 

film) specular reflectances at the front (1) and back (2) interfaces (assumed ideally flat), 

respectively (see Fig. 1). 𝑅2
′  and 𝑅3

′  are, the specular reflectances inside the substrate, at the 

substrate-film and substrate–air interfaces, respectively. According to the Fresnel equations, 

these specular reflectances for weakly absorbing media are expressed as (see the appendix): 

 

                                                 𝑅1 = 𝑟1
2 = (

𝑛−𝑛𝑜

𝑛+𝑛𝑜
)

2

                                                              (4) 

                                                𝑅2 = 𝑟2
2 = (

𝑛−𝑛𝑔

𝑛+𝑛𝑔
)

2

                                                            (5) 

                                                 𝑅2
′  = 𝑟′2

2 = (
𝑛𝑔−𝑛

𝑛𝑔+𝑛
)

2

                                                            (6) 
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                                                𝑅3
′  = 𝑟′3

2 = (
𝑛𝑔−𝑛𝑜

𝑛𝑔+𝑛𝑜
)

2

                                                           (7) 

The coefficients of transmission at the three interfaces are expressed as: 

                                          𝑇1 =
𝑛

𝑛𝑜
𝑡1

2 =
𝑛

𝑛𝑜
(

2𝑛𝑜

𝑛𝑜+𝑛
)

2

                                                             (8) 

                                         𝑇2 =
𝑛𝑔

𝑛
𝑡2

2 =
𝑛𝑔

𝑛
(

2𝑛

𝑛+𝑛𝑔
)

2

                                                             (9) 

                                      𝑇3 =
𝑛0

𝑛𝑔
𝑡2

2 =
𝑛0

𝑛𝑔
(

2𝑛𝑔

𝑛𝑜+𝑛𝑔
)

2

                                                             (10) 

It is worth to mention that the rigorous expression (3) is similar to that used in the past for 

the determination of the thickness and the optical constants of transparent and weakly 

absorbing films on transparent substrates [19][20] [21][22] . However in this work we fitted 

the transmission curve predicted by equation 3, with the experimental transmission obtained 

for different ZnO:Al films, by introducing the values for the optical constants as a function 

of wavelength, measured and/or obtained from the models described below, and fitting the 

film thickness and other parameters such as film roughness and damping constant.  

The dependence of the refractive index of the glass substrate with the wavelength was 

obtained from the experimental spectrum for the interference-free transmission of the glass 

substrate alone in the absence of film, using the formula [22][23]:  

                                                          𝑛𝑔 =
1

𝑇𝑠
+ (

1

𝑇𝑠
2 − 1)

1/2
                                                            (11) 

The refractive index 𝑛 and extinction coefficient 𝜅 of the ZnO:Al film was calculated in 

terms of the real (𝜖1) and imaginary (𝜖2) parts of the complex optical dielectric function 

𝜖̂ = 𝜖1 + 𝑖𝜖2 , using the well known formulas [18]: 

                                       𝑛 =
1

√2
(𝜖1 + (𝜖1

2 + 𝜖2
2)1/2)

1/2
                                                   (12) 

                                     𝜅 =
1

√2
(−𝜖1 + (𝜖1

2 + 𝜖2
2)1/2)

1/2
                                                   (13) 

 

According to the Drude-Lorentz model the complex optical dielectric function can be 

expressed as a function of the angular frequency of the light (𝜔 =
2𝜋𝑐

𝜆
) in the following form 

[6] [18][24]:  

 

                                       𝜖̂(𝜔) = 𝜖̂𝑏 + 𝛿𝜖̂𝑓                                                                         (14) 

                                          𝜖̂𝑏 = 𝜖1
𝑏 + 𝑖𝜖2

𝑏 = 1 +
𝑁𝑒2

𝜖0𝑚𝑜
∑

𝑓𝑗

𝜔𝑜𝑗
2 −𝜔2−𝑖𝛾𝑗𝜔

⬚
𝑗                              (15) 
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                       𝛿𝜖̂𝑓 = 𝛿𝜖1
𝑓

+ 𝑖𝛿𝜖2
𝑓

= −
𝑛𝑒𝑒2

𝜖𝑜𝑚(𝜔2+𝑖𝛾𝜔)
                                                           (16) 

This expressions separates explicitly the dielectric function, 𝜖̂𝑏, including only the bound-

electrons (𝜖̂𝑏) of the ZnO lattice with resonant frequencies 𝜔𝑜𝑗 and oscillator strengths 𝑓𝑗, 

and the contribution (𝛿𝜖̂𝑓)  of free-electrons (electrons in the conduction band). 

In the region of transparency, far from the resonant frequencies, 𝜔𝑜𝑗, the imaginary part, 𝜖2
𝑏, 

can be considered null and the real part of the optical dielectric function due to bound 

electrons, 𝜖1
𝑏 , can be expressed in the form of a Sellmeier equation [18]. Thus for 

wavelengths far from the absorption edge of ZnO:Al (𝜆𝑎𝑏𝑠 ≈ 360 𝑛𝑚) we can express 

                                              𝜖2
𝑏 = 0                                                                                  (17) 

                                  𝜖1
𝑏 = (𝑛𝑏)2 = 𝐴 +

𝐵𝜆2

𝜆2−𝐶2
+

𝐷𝜆2

𝜆2−𝐸2
                                                     (18) 

with the values of the A, B, C, D and E parameters given in table 1 [25][26]. 

 

Table 1. Fitting parameters of Sellmeier model for the refractive index of ZnO thin films 

[25][26]. 

A B C(nm) D E(nm) 

2.0065 1.5748
× 106 

1.0 × 106 1.5868
× 106 

270.63 

 

On the other hand, the explicit expressions for the real and imaginary parts of the free electron 

contribution are: 

                                         𝛿𝜖1
𝑓

= −
𝑛𝑒𝑒2

𝜖𝑜𝑚(𝜔2+𝛾2)
                                                                 (19) 

                                         𝛿𝜖2
𝑓

=
𝑛𝑒𝑒2𝛾

𝜖𝑜𝑚𝜔(𝜔2+𝛾2)
                                                                   (20) 

where 𝑚 is the electron mass, 𝜖𝑜  is the vacuum permittivity, and 𝛾 =
1

𝜏
 is the damping rate 

or damping constant, where 𝜏 is the free carrier scattering time or relaxation time. Some 

recent works have shown that the value of the damping constant depends mainly on the 

frequency or wavelength of the light, but there is also a dependence on the carrier 

concentration [6][27]. For example, for a ZnO:Al film with a carrier concentration of 

3.62 × 1020𝑐𝑚−3  , the damping constant increases from 1.78 × 1014𝐻𝑧 (944 𝑐𝑚−1)  to 

2.85× 1014𝐻𝑧 (1515 𝑐𝑚−1) as the wavelength range of the light increases from the visible 

region to the infrared region [6]. For larger wavelengths, in the range of terahertz, as the 

carrier concentration increase from 5.9 × 1017𝑐𝑚−3  to 4.0 × 1019𝑐𝑚−3  the damping 

constant increase from 9.2 × 1013𝐻𝑧 to 7.04 × 1014𝐻𝑧 [27].  

Thus, substituting the equations (17)-(20) in (14), the real and imaginary parts of the complex 

optical dielectric function of the ZnO:Al films can be expressed as:  

               𝜖1(𝜆) = 𝜖1
𝑏 + 𝛿𝜖1

𝑓
= 𝐴 +

𝐵𝜆2

𝜆2−𝐶2 +
𝐷𝜆2

𝜆2−𝐸2 −
𝑛𝑒𝑒2

𝜖𝑜𝑚(𝜔2+𝛾2)
                                       (21) 
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                𝜖2(𝜆) = 𝜖2
𝑏 + 𝛿𝜖2

𝑓
=

𝑛𝑒𝑒2𝛾

𝜖𝑜𝑚𝜔(𝜔2+𝛾2)
                                                                      (22) 

For the evaluation of these expressions as a function of the wavelength or angular frequency 

of the light, the concentration of electrons in the ZnO:Al films was measured by Hall effect, 

as mentioned in the experimental part. The expressions (21) and (22) were used in the 

formulas (12) and (13) to obtain the wavelength dependence of the refractive index 𝑛(𝜆) and 

extinction coefficient 𝜅(𝜆) of the ZnO:Al films. The refractive index was substituted in 

equations (4) and (5) to calculate the wavelength dependence of the reflection coefficients, 

𝑅1  and 𝑅2 , for internal specular reflection at the film-air and film-susbstrate interfaces, 

respectively, which appear in formula (3) for the transmission through the film/substrate 

optical system. For the absorption coefficient of the ZnO:Al film, that appears in the same 

formula (3) we considered two contributions. The first contribution was that proportional to 

the extinction coefficient due to free electrons 

                                                      𝛼𝑓(𝜆) =
2𝜅(𝜆)𝜔

𝑐
=

4𝜋𝜅(𝜆)

𝜆
                                                               (23) 

where 𝜅(𝜆)  is the extinction coefficient obtained from the formula (13). 

The second contribution was to include the absorption edge of the ZnO:Al film, and it was 

through an Urbach rule of the absorption edge coefficient, expressed in terms of the energy 

of the photons (ℏ𝜔)  and the energy band gap (𝐸𝑔)  of the ZnO:Al film as: 𝛼𝑈 =

𝛼𝑜𝑒𝑏(ℏ𝜔−𝐸𝑔 )/𝑘𝐵𝑇𝑎 = 𝛼𝑜𝑒(ℏ𝜔−𝐸𝑔 )/𝐸𝑈 , where 𝛼𝑜  and 𝑏  are fitting parameters, 𝑘𝐵  is the 

Boltzmann constant and 𝑇𝑎 is the absolute temperature in kelvin degrees [18][28]. It must be 

pointed out that, physically, 𝐸𝑈, is the Urbach energy which is equal to the energy width of 

the absorption edge and 𝛼𝑜  is the convergence value of the absorption coefficient when 

ℏ𝜔 = 𝐸𝑔 [28]. The exponential increase of the absorption coefficient below the absorption 

edge is explained by transitions between the tails of density of states in the valence band and 

the conduction band and the shape and size of these tails depend on the presence of different 

type of disordering. In terms of the photon wavelength and the absorption edge wavelength 

which is related to the energy band gap by: 𝐸𝑔(eV) = 1240/𝜆𝑔(𝑛𝑚), the Urbach absorption 

coefficient is commonly expressed as [26][29][30]: 

                                                    𝛼𝑈(𝜆) = 𝛼𝑜𝑒
1240∙𝛽(

1

𝜆
−

1

𝜆𝑔
)
                                                             (24) 

where 𝛼𝑜 and 𝛽 = 1/𝐸𝑈 are fitting parameters.  

The band gap of the ZnO:Al films was measured from the absorption edge in the 

experimental transmission curve (𝑇𝑒𝑥𝑝) using the formula for direct interband absorption in 

a direct band gap semiconductor: 

                                                   𝛼𝑒𝑥𝑝 = −
1

𝑑
𝑙𝑛(𝑇𝑒𝑥𝑝) ∝ (ℏ𝜔 − 𝐸𝑔)

1/2
                                    (25) 

where 𝑑 is the thickness of the ZnO:Al film and  ℏ𝜔 is the photon energy. 

Thus, the absorption coefficient 𝛼(𝜆) used in equation (3) was finally expressed by the 

formula: 

                                               𝛼(𝜆) = 𝛼𝑓 + 𝛼𝑈 =
4𝜋𝜅(𝜆)

𝜆
+ 𝛼𝑜𝑒

1240∙𝛽(
1

𝜆
−

1

𝜆𝑔
)
                                  (26) 
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At this point it is important to mention that for the deduction of equation (3) it was implicitly 

assumed that the surfaces of the film and substrate are perfectly smooth. However, according 

to the AFM and SEM images obtained for various ZnO:Al films (see Figs. 3 and 4), these 

films have a rough surface, with an average roughness in the range from 15 to 20 nm. As it 

was shown in an elderly work the specular reflectance of a rough surface is reduced with 

respect to that of a perfectly smooth surface of the same material [31]. Since then several 

models have been developed to obtain expressions relating the roughness,  𝜎𝑠,  of a plane 

surface  to the specular reflectance and transmittance at normal incidence, for different 

magnitudes of the roughness compared with the wavelength, 𝜆 [32][33]. Based on these 

models, in order to include the effect of the surface roughness of the ZnO:Al films in the total 

transmission, we multiply the specular reflectances at normal incidence of the perfectly 

smooth surfaces at the front and the back of the films, 𝑅1 and 𝑅2, given by formulas (4) and 

(5) by a surface scattering factor, to obtain the specular reflectance at the film rough surfaces, 

expressed as [32]:  

                                              𝑅1𝑟𝑠 = 𝑅1𝑒−(2(2𝜋𝑛𝜎𝑠)2/𝜆2)                                                    (27) 

                                             𝑅2𝑟𝑠 = 𝑅2𝑒−(2(2𝜋𝑛𝜎𝑠)2/𝜆2)                                                     (28) 

In these equations it is assumed that 𝜎𝑠  is the surface roughness at macroscopic level 

measured by the rms value of the irregularity heights and also that 𝜎𝑠 ≪ 𝜆.  

In similar way the specular transmittance at the film rough surfaces was expressed as [32], 

[33]: 

                                               𝑇1𝑟𝑠 = 𝑇1𝑒
−(

1

2
(2𝜋𝜎𝑠1(𝑛𝑒𝑓𝑓−1))

2
/𝜆2)

                                        (29) 

                                               𝑇2𝑟𝑠 = 𝑇2𝑒
−(

1

2
(2𝜋𝜎𝑠2(𝑛𝑒𝑓𝑓−1))

2
/𝜆2)

                                        (30) 

In these equation the rough surface of the film was modeled as a thin homogeneous layer 

with a thickness that is twice the rms roughness of the surface and with an effective refractive 

index intermediate to the indices of the two adjacent optical media, and in this case (film-

air), given by [33]: 

                                                𝑛𝑒𝑓𝑓 = (
𝑛2+1

2
)

1/2

                                                                               (31) 

Thus, substituting the expressions (27)-(31) in equation (3), the final expression for the 

transmittance, including the effect of the roughness, is: 

                                                         𝑇 = [
𝑇3

1−𝑅2
′ 𝑅3

′ ] (
𝑇1𝑟𝑠𝑇2𝑟𝑠𝑒−𝛼𝑙

1−2𝑅1𝑟𝑠
1/2

𝑅2𝑟𝑠
1/2

 𝑐𝑜𝑠 𝛷𝑒−𝛼𝑙+𝑅1𝑟𝑠𝑅2𝑟𝑠 𝑒−2𝛼𝑙
)                (32) 

III. Experimental 

The ZnO:Al films modeled in this work were deposited on glass substrates by ultrasonic 

spray pyrolysis at atmospheric pressure, using the same home-made system, precursor 

solution and preparation conditions given elsewhere [7]. In this case, the substrate 

temperature was fixed at 350 °C. A series of ZnO:Al films with different thickness were 

deposited using different deposition times varying in the range from 5 to 15 min. A double 
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beam PerkinElmer 35 Uv-Vis spectrometer was used to measure the optical transmission of 

the films, in the range of wavelengths from 190 to 1100 nm, with a resolution of 1 nm. X-

rays diffraction (XRD) measurements were made for determining the crystalline structure of 

the films, using a Bragg–Brentano Rigaku ULTIMA IV diffractometer with an X-ray source 

of Cu Ka line (0.15406 nm), at a grazing beam configuration (incidence angle of 1°). The 
surface  morphology of the films was explored by atomic force microscopy (AFM) and 
scanning electron microscopy (SEM) using a JEOL JSPM-4210 scanning probe 

microscope and a JEOL 7600F field emission scanning electron microscope (FESEM), 

respectively. The carrier concentration and electrical conductivity of the films were measured 

at room temperature by Hall-effect in the van der Pauw configuration, using a Ecopia HMS-

3000 system, applying a magnetic field of 0.540 T and a current of 1.0 mA.  

 

IV. Results and discussion 

Figure 2 shows the transmission spectra of six ZnO:Al films with different thickness, which 

were ordered with decreasing thickness (decreasing deposition time) and named AZO1, 

AZO2, AZO3, AZO4, AZO5 and AZO6, respectively. As can be seen from this figure all the 

transmission spectra show maxima and minima whose number decreases as the deposition 

time or thickness of the films decreases.  
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Figure. 2. Experimental optical transmission spectra for ZnO:Al thin films with different 

thickness deposited on glass substrates. The thickness of the films was decreased from sample 

AZO1 to sample AZO6, by decreasing the deposition time. Reprinted with permission from [17] 
@ Optica Publishing Group. 

The thickness 𝑑  of the films was preliminary estimated using the well-known formula 

obtained from the conditions for the constructive and destructive interference of the multiple 

reflections of light in the film [19][20] [21][22]: 𝑑 =
𝜆1𝜆2

2(𝜆1𝑛(𝜆1)−𝜆2𝑛(𝜆2))
, where 𝜆1 and 𝜆2 are 

the wavelengths corresponding to two consecutive maxima (𝜆𝑀) or minima (𝜆𝑚) of the 

optical transmission. The thickness of the films can be also calculated from consecutive 

maxima (𝜆𝑀) and minima (𝜆𝑚), using the factor 4 instead of the factor 2 in the denominator 

of the previous formula. For the measurements of the thickness of our AZO films we used 

the Sellmeier expression for the refractive index, 𝑛(𝜆) = 𝑛𝑏 = √𝐴 +
𝐵𝜆2

𝜆2−𝐶2 +
𝐷𝜆2

𝜆2−𝐸2  , given 

in equation (18), with the values of the parameters listed in table 1. As it has been shown in 

some works [22], this formula is not very accurate because in practice it is very sensitive to 
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variations or non-uniformities in the refractive index and thickness of the films, which give 

rise to some dispersion in the vales of 𝑑. Due this we used the following procedure to estimate 

the average thickness (𝑑𝑎𝑣) for each sample. First, we obtained the average thickness 𝑑𝑖𝑀𝑚 

from the list of wavelengths for consecutive maxima and minima in all the spectral range 

from 190 to 1100 nm. Then we obtained the average thicknesses 𝑑𝑖𝑀 and 𝑑𝑖𝑚  from the list 

of wavelengths for consecutive maxima or consecutive minima, respectively. The average 

thickness, dav , for each sample was the average of, 𝑑𝑖𝑀𝑚 , 𝑑𝑖𝑀  and 𝑑𝑖𝑚 , and all these 

thicknesses are shown in Table 2.  

Table 2. List of estimated thicknesses by the interference formula, along with the carrier 

concentration, ne, conductivity, 𝝈 , and sheet resistance, Rsheet, and band gap, Eg, 

experimentally measured for each sample.  

Sample 

 

diMm  

(nm) 

 

diM  

(nm) 

 

dim  

(nm) 

 

dav 

(nm) 

 

ne 

(cm-3) 
𝜎 

(Ω cm)−1 

Rsheet 

Ω 

Eg 

(eV) 

(band gap) 

AZO1 1059 1056 1027 1047 2.7x1020 2.08x102 45.4 3.41 

AZO2 972 947 897 939 3.02x1020 1.98x102 51.9 3.42 

AZO3 768 758 726 751 2.54x1020 1.46x102 91.2 3.43 

AZO4 608 600 567 592 2.6x1020 1.24x102 136.2 3.40 

AZO5 431 437 422 430 2.22x1020 7.9x101 293 3.41 

AZO6 258 256 - 257 2.14x1020 1.44x102 269 3.45 

 

Table 2 also shows the carrier concentration, ne, conductivity,𝝈, and sheet resistance, Rsheet, 

of the films, measured by Hall effect using the van der Pauw configuration. It must be pointed 

out that we used the average thickness, 𝑑𝑎𝑣 , as the input thickness required for the Hall 

measurements. The values of the energy band gaps, 𝐸𝑔, of the films listed in table 2 were 

calculated by taking the plot of (𝛼𝑑 )2 υs ℏ𝜔  obtained from the equation (25) using the 

experimental transmittance, 𝑇𝑒𝑥𝑝 , and the average film thickness 𝑑 = 𝑑𝑎𝑣. 

The AFM and SEM analysis showed that all the samples have similar morphology. For 

example, Fig. 3 shows the AFM micrographs and profiles of samples AZO1 and AZO6. 
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Fig. 2. AFM images and profiles of (a),(b) sample AZO1 and (c),(d) sample AZO6. Reprinted 
with permission from [17] @ Optica Publishing Group. 

 

The AFM profiles of these samples show similar surface heights differences of around 20 

nm. Fig. 4 show a cross section FESEM micrograph with a certain rotation and inclination 

of the AZO1 sample, where it is clearly seen that there is roughness at the top surface and at 

the bottom surface of the film. 

 

Figure. 4. Cross section FESEM micrograph with a certain rotation and inclination of 

sample AZO1. 

Using the values of carrier concentration, band gap, and average thickness of each film, given 

in table 2, we started to plot the experimental transmission curves along with the modeled 

transmission using equation (3) and started to improve the fitting by changing the values of 

the thickness 𝑙 appearing in equation (32) around the corresponding average thickness, 𝑑𝑎𝑣, 

and adjusting the values of the Urbach parameters, 𝛼𝑜 and 𝛽. Although we tried the fitting 

using different constant values of the damping constant, 𝛾, the best fitting was achieved 

expressing the damping constant as a linear function of the wavelength, as: 

                                                                  𝛾 = 𝜉𝜆                                                               (33) 

where 𝜉 was a fitting parameter. 

Figure 5 shows the experimental and the best modeled optical transmission for all the 

samples, using the formula (32), which includes the effect of the roughness at the two 

interfaces of the films, 𝜎𝑠1 and 𝜎𝑠2. As can be seen, the modeled transmission curve fits quite 

well with the experimental transmission curve, above all in the range of visible wavelengths 

(400- 800 nm).  
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Figure. 5. Experimental (AZO) and the best modeled (TAZO) optical transmission using 

Eq. (32) for samples AZO1 to AZO6. 

 

Table 3 shows the values of all the parameters which gave rise to the best fitting. Comparing 

the thicknesses for the fitting, listed in table 3, with the average thicknesses, 𝑑𝑎𝑣, listed in 

table 2, we found that the fitting thickness for samples AZO1 –AZO5 is around 2 - 4 % lower 

than the corresponding average thickness, and for the thinnest sample AZO6, 𝑙 is 9% lower 

than 𝑑𝑎𝑣.  
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Sample  AZO1 AZO2 AZO3 AZO4 AZO5  AZO6 

Average 
Thickness  

(nm) 

1047 939 751 592 430 257 

Thickness 𝑙 
(nm) 

1024 900 735 575 424 233 

𝒏𝒆 (×

𝟏𝟎𝟐𝟎𝒄𝒎−𝟑) 

2.7 3.02 3 2.6 2.22 2.88 

𝝈(𝟏𝟎𝟐) 

(Ω𝒄𝒎)−𝟏 

2.08 1.98 2.54 1.24 1.53 2.84 

𝝃 (×
𝟏𝟎𝟏𝟏 𝑯𝒛 𝒏𝒎−𝟏 ) 

2.8 2.8 2.8 3.5 4.8 4.8 

𝛼𝑜  (×
𝟏𝟎−𝟑𝒏𝒎−𝟏) 

2.5 2.5 3 2.5 3 3.2 

𝛽 (𝒆𝑽−𝟏) 10 10 10 10 9.2 10 

 𝝀𝒈(𝒏𝒎) 363 363 363 364 364 364 

𝜎𝑠1(nm) 20 20 20 21 16 16 

𝜎𝑠2(nm) 18 18 18 20 16 16 

 

IV.1 Effect of the different parameters on the fitting of the modeled transmittance 

curves  

In this section we show the effect that the different parameters have on the fitting of the 

modeled transmission curves compared with the experimental ones. Figure 6 a) shows the 

experimental and the best modeled optical transmission for sample AZO3, meanwhile Fig. 6 

b) shows the experimental and the modeled transmission using the corresponding average 

thickness measured for this sample given in table1 (𝑑𝐴𝑣 = 751𝑛𝑚), instead of the thickness 

of 𝑙 = 735 𝑛𝑚, which gives the best fitting. As can be seen from Fig. 6 b), a change of 2 % 

in the thickness shifts the wavelength positions of the maxima and minima for the modeled 

curve with respect to the experimental one. This misfit is expected since the thickness 𝑙 enters 

in the formula for the modeled transmittance, which includes the contribution of both, the 

free electrons and the bound electrons in the dependence of the refractive index of the films 

with respect to the wavelength, meanwhile the thickness 𝑑𝐴𝑣 is calculated considering only 

the contribution of the bound electrons (only the Sellmeier formula).  As Fig. 6 c) shows, the 

effect of neglecting (𝑛𝑒 = 0) the contribution of the free carriers to the refractive index of 

the films is to increase the modeled transmission with respect to the experimental 

transmission, mainly in the infrared region, and also to shift the wavelength position of the 

maxima and minima. This is also expected since 𝑛𝑒 = 0 implies that there is no optical 

absorption in the visible and infrared region due to free carriers and only remains the 

absorption edge in the ultraviolet region due to interband absorption. 𝑛𝑒 = 0 , also implies a 

change in the refractive index of the film and the consequent shift in the maxima and minima 

of interference.  
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Figure 6. Experimental optical transmission for sample AZO3 and for the same sample: a) 

the best modeled transmission, b) the modeled transmission using 𝑙 = 𝑑𝐴𝑣 = 751𝑛𝑚,  and 

c) the modeled transmission neglecting (𝑛𝑒 = 0) the contribution of the free carriers. 

Figure 7 a) and 7 b) show the effect of using a fixed value for the damping constant, 𝛾, of 

5 × 1013𝐻𝑧 and 3 × 1014𝐻𝑧, respectively, instead of using the linear dependence given by 

equation (33) in the modeled transmission for sample AZO3, which gives rise to the value of  

5.34 × 1013𝐻𝑧  for 𝜆 = 190 𝑛𝑚  and 3.08 × 1014𝐻𝑧  for 𝜆 = 1100𝑛𝑚  . As can be seen 

from Figs. 7 a) and 7 b) a low fixed value of the damping constant gives rise to an increase 

in the modeled transmission with respect to the experimental transmission, mainly in the 

infrared region, meanwhile a high fixed value decreases the modeled transmission in the 

infrared region and even in the visible region. Figure 7 c) shows the effect of removing the 

roughness from the modeled curve. As can been from this figure, neglecting the roughness, 

the visibility of the modeled curve (the difference between transmission percentage between 

maxima and minima) increases with respect to that of the experimental curve. So, as 

expected, the effect of the roughness is to decrease the visibility of the interference pattern 

in the transmission curve, mainly in the visible region. It is worth to mention that the rms 

roughness values listed in table 3, which gave the best fitting of the visibility of the films, are 

in good agreement with the roughness observed in the AFM profiles of the samples (see Figs 

3) 
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Figure 7. Experimental optical transmission for sample AZO3 and the modeled optical 

transmission for the same sample using: a) 𝛾 = 5 × 1013𝐻𝑧 , b) 𝛾 = 3 × 1014𝐻𝑧 , and c) 

𝜎𝑠 = 0 , i.e. neglecting  the effect of the surface roughness. 

Figure 8 a) shows the effect of changing the value of parameter 𝛽 in the Urbach rule formula 

to 𝛽 = 5 𝑒𝑉−1 , instead of the value of this parameter for the best fitting of the experimental 

transmission curve of sample AZO3, which, as shown in table 3 is: 𝛽 = 10 𝑒𝑉−1. As can be 

seen from this figure, the decrease in the value of this parameter widens the absorption edge 

in such a way that the AZO film starts to absorb light at a larger wavelength, or equivalently 

at a lower energy. This is well expected since the Urbach energy is: 𝐸𝑈 =
1

𝛽
, so, a decrease 

in the parameter 𝛽 means an increase in the energy width of the absorption edge, which in 

turn means a widening of the tails of the density of states above the valence band and below 

the conduction band [28]. Consequently, the optical absorption due to electron transitions 

between these tails occurs at lower energies or larger wavelengths. As Fig. 8 b) shows a 
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decrease in the value of the parameter 𝛼𝑜 , from 𝛼𝑜 = 3 × 10−3𝑛𝑚−1 (best fit) to 𝛼𝑜 =
1 × 10−3𝑛𝑚−1 , in the Urbach rule formula has the effect of increasing the optical 

transmission, just in the region of the absorption edge . This is directly explained by the fact 

that 𝛼𝑜 is the value of the absorption coefficient when ℏ𝜔 = 𝐸𝑔 [28], and a decrease in the 

value of this coefficient implies an increase in the optical transmittance a wavelengths close 

to 𝜆𝑔(𝑛𝑚) = 1240/𝐸𝑔(eV). On the other hand, from this last relation between 𝜆𝑔  and the 

band gap 𝐸𝑔, it is evident why an increase in the absorption wavelength parameter, from 

𝜆𝑔 = 363 𝑛𝑚  (best fit) to 𝜆𝑔 = 370 𝑛𝑚 , shifts the transmittance curve to larger 

wavelengths, as observed in Fig. 8 c) 

400 600 800 1000
0

20

40

60

80
0

20

40

60

80
0

20

40

60

80

c)

 T
 (

%
)

Wavelength (nm)

 T(lmbg=370 nm

 TAZO3 exp

b)

 T
 (

%
)

 T(alfao=1 nm-1)

 TAZO3 exp

 

 T
 (

%
)

 T(beta=5 eV-1)

 TAZO3 exp

a)

 

Figure 8. Experimental optical transmission for sample AZO3 and the modeled optical 

transmission for the same sample using: a) 𝛽 = 5 𝑒𝑉−1, b) 𝛼𝑜 = 1 × 10−3𝑛𝑚−1, and c) 𝜆𝑔 =

370 𝑛𝑚.  
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IV.2  Figure of merit and criteria to choose the best TCC.  

In this section we use the rigorous expression (32) for the transmission of a ZnO:Al thin film 

on a glass substrate, with the parameters for the best fit for sample AZO3, to calculate and/or 

predict the average optical transmission, in the visible range from 400 to 800 nm, as a 

function of thickness, assuming thicknesses in the range from 50 nm to 10000 nm. Using the 

average value of the absorption coefficient in the same visible range, 𝛼̅ = 3.45 × 10−5𝑛𝑚−1, 

we also calculated the Beer’s transmittance as a function of thickness (𝑇𝐵 = 𝑒−𝛼̅𝑙). Along 

with this we calculated the sheet resistance as a function of thickness, 𝑅𝑠 = 1/𝜎𝑜𝑙, assuming 

that the dc-electrical conductivity, 𝜎𝑜, of the film remains constant in the value measured for 

sample AZO3 listed in table 1, 𝜎𝑜 = 146 Ω−1cm−1. Figure 9 shows the plot of the modeled 

optical transmission, T, the Beer´s transmission, 𝑇𝐵 , and the sheet resistance as a function of 

thickness. As can be seen, the sheet resistance decrease hyperbolically with thickness, 

meanwhile both transmissions,  𝑇  and 𝑇𝐵  decrease almost linearly with increasing the 

thickness in the range of 50 to 10000 nm. This cuasi-linear decrease is because in this range 

of thicknesses the factor 𝛼̅𝑙 is small. However, the modeled transmission is around 20% 

lower than the unrealistic Beer’s transmission 𝑇𝐵.and the latter decreases with o lower slope 

than the former.  

 

Figure 9. Plots of the modeled optical transmission, T, the Beer´s transmission, 𝑇𝐵 , and the 

sheet resistance, 𝑅𝑆 , as a function of thickness. 
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Figure 10. Plots of original figures of merit using the modeled trasnmisssion (𝐹 =
𝑇

𝑅𝑠
 ) and 

the Beer´s transmission (𝐹𝐵 =
𝑇𝐵

𝑅𝑠
 ), and the redefined Figures of merit by Haacke, 𝐹𝐻 =

𝑇10

𝑅𝑠
  

and 𝐹𝐻𝐵 =
𝑇𝐵

10

𝑅𝑠
 . Reprinted with permission from [17] @ Optica Publishing Group. 

Based on the definitions given by equations (1) and (2) for the original figure of merit and 

the redefined Figure of merit by Haacke, respectively, we calculated these figures of merit 

as a function of thickness, using both, the modeled trasnmisssion and the Beer´s transmission. 

Figure 10 shows the plots of these figures of merit, and as can be seen the original figures of 

merit, 𝐹 =
𝑇

𝑅𝑠
  and 𝐹𝐵 =

𝑇𝐵

𝑅𝑠
  , are far from reaching the maximum value, for the region of 

thickness considered in the plot. This was expected since based on the discussion given in 

the introduction, this maximum value should be reached for a thickness equal to 𝑙 =
1

𝛼̅
=

1

3.45×10−5𝑛𝑚−1
≈ 28985 𝑛𝑚. This shows clearly that the criteria of choosing a thin film of 

ZnO:Al with this thickness, as the best TCC is unrealistic, even using the modeled 

transmission. On the other hand, as the same Fig. 10 shows, the redefined figures of merit, 

𝐹𝐻 =
𝑇10

𝑅𝑠
  and 𝐹𝐻𝐵 =

𝑇𝐵
10

𝑅𝑠
  , do reach the maximum value of ~3 × 10−3Ω

−1
 and 2 ×

10−2Ω
−1

 , respectively, for a thickness 𝑙 ≈ 2900 𝑛𝑚 . Although this thickness is much 

lower, it is still questionable to choose this as the thickness for a ZnO:Al thin film to be the 

best TCC. As Fig. 9 shows, in spite of the fact that this film would have a very low sheet 

resistance of ~17 Ω , its transmission would be 𝑇 ≈ 0.75, which do not meet the general 

criteria of  𝑇 ≥ 0.80 to be considered a good TCC [34]. As Fig. 9 shows, in order to meet 

this criteria the thickness of the film should be: 𝑙 ≈ 1000 𝑛𝑚, and this film would have a 

sheet resistance of ~50 Ω, and a figure of merit of  1.6 × 10−2Ω
−1

. From this analysis we 

can conclude that the criteria of choosing the thickness of the best TCC film as that to get the 

maximum of the original or the redefined figure of merit, is not a realistic criteria. The 
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alternative method proposed in this work to determine the thickness of a ZnO:Al film, for its 

application as a good TCC, is to select this thickness from the plots shown in Fig 10 of the sheet 

resistance and the average transmission calculated from our modeled transmission, in the region of 

thicknesses where this average transmission is equal or higher than 80 %. From these plots it is clearly 

seen that in order to obtain TCCs with sheet resistances between 100 and 50 Ω, the thickness of the 

ZnO:Al films must be in the range from 500 to 1000 nm, and the figure of merit of this TCCs have 

values in the range from 8.1 × 10−3 to 1.16 × 10−2 Ω−1. 

 

Figure 11. Plots of sheet resistance and average transmission calculated from the modeled 

transmission, in the region of thicknesses where this average transmission is equal or higher 

than 80%. Reprinted with permission from [17] @ Optica Publishing Group. 

V. Conclusions 

We have developed a comprehensive expression for the optical transmission of thin films of 

ZnO:Al deposited by ultrasonic spray pyrolysis on glass substrates, with the purpose of 

calculating their figure of merit and their optimal thickness as TCCs. The modeled 

transmission considers the effect of the free carrier concentration, measured by Hall effect, 

in the optical absorption of the films, as well as the Urbach absorption edge, the interference 

effects of multiple specular reflections and roughness of the film’s surfaces. Our results show 

that by fitting the model presented here to the experimental transmission curves for films, 

very precise values of the thickness and rms roughness of the films can be obtained, as well 

as the values of some important optical and electronic parameters such as the band gap and 

width of the energy band tails associated to the conduction and valence bands.  

 

 

 

UNDER PEER REVIEW



21 
 

Appendix A  

The expression (3) for the transmission T through the system air/film/glass substrate/air 

shown in Fig 1 is derived in this appendix.  

We assume that the refractive index of air is real (𝑛0 = 1), the refractive index of the film is 

complex (𝑛̃ = 𝑛(𝜆) + 𝑖𝜅(𝜆)), and the refractive index of the glass substrate is real 𝑛𝑔 =

𝑛𝑔(𝜆). The spatial component of the electric field of one plane wave propagating in the x 

direction (at normal incidence of the light beam with the film surface) inside the film of 

thickness 𝑙 can be expressed as:  

                                                                      𝐸𝑓 = 𝐸𝑡𝑓𝑒𝑖𝑘̃𝑥                                                              (A1) 

where 0 ≤ 𝑥 ≤ 𝑙, 𝐸𝑡𝑓is the electric field of the transmitted wave at the interface 1 air-film 

(𝑥 = 0) and 

                                                                      𝑘̃ = 𝑛̃
𝜔

𝑐
= 𝑛̃

2𝜋

𝜆
                                                           (A2) 

where 𝜆 is the wavelength of the light in airvacuum.  

According to Fresnel’s relations, at normal incidence, the amplitude transmission coefficients 

at the air-film (1) and film-substrate (2) are, respectively: 

                                                      𝑡̃1 = (
𝐸0𝑡1

𝐸01
) =

2𝑛𝑜

𝑛𝑜+𝑛̃
                                                       (A3) 

                                                      𝑡̃2 = (
𝐸0𝑡2

𝐸02
) =

2𝑛̃

𝑛̃+𝑛𝑔
                                                      (A4) 

and the corresponding amplitude reflection coefficients are: 

𝑟̃1 = (
𝐸0𝑟1

𝐸01
) =

𝑛𝑜 − 𝑛̃

𝑛𝑜 + 𝑛̃
 

𝑟̃2 = (
𝐸0𝑟2

𝐸02
) =

𝑛̃ − 𝑛𝑔

𝑛̃ + 𝑛𝑔
 

Let us assume that the coherence length of light exceeds the thickness, l, of the film and thus, 

the interference effects of the multiply reflected beams are important. So considering multiple 

reflections, the electric field of the first, second, and the m-th beam transmitted through the 

film (from the air toward the glass substrate) are, respectively:   

𝐸𝑡𝑓1 = 𝐸0𝑡̃1𝑡̃2𝑒
𝑖𝑛̃

2𝜋
𝜆

𝑙
= 𝐸0𝑡̃1𝑡̃2 𝑒𝑖𝑄̃ 

𝐸𝑡𝑓2 = [𝐸0𝑡̃1𝑡̃2𝑒𝑖𝑄̃]𝑟̃1𝑟̃2 𝑒𝑖2𝑄̃ 

                                                    …………………………………… 

𝐸𝑡𝑚 = [𝐸0𝑡̃1𝑡̃2𝑒𝑖𝑄̃]𝑟̃1
𝑚−1𝑟̃2

𝑚−1𝑒𝑖2(𝑚−1)𝑄̃ 

where  

𝑄̃ = 𝑛̃
2𝜋

𝜆
𝑙 
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Adding  all the terms from 𝑚 = 1 to 𝑚 → ∞ and redefining the index 𝑘 = 𝑚 − 1 

𝐸𝑇 = [𝐸0𝑡̃1𝑡̃2𝑒𝑖𝑄̃] ∑(𝑟̃1𝑟̃2𝑒𝑖2𝑄̃)
𝑘

∞

𝑘=0

 

Then using 

𝑞̃ = 𝑟̃1𝑟̃2𝑒𝑖2𝑘𝑄̃ < 1 

∑(𝑟̃1𝑟̃2𝑒𝑖2𝑄̃)
𝑘

∞

𝑘=0

= ∑ 𝑞̃𝑘

∞

𝑘=0

=
1

1 − 𝑞̃
=

1

1 − 𝑟̃1𝑟̃2𝑒𝑖2𝑄̃
 

we obtain, 

𝑡̃ =
𝐸𝑇

𝐸0
=

𝑡̃1𝑡̃2𝑒𝑖𝑄̃

1 − 𝑟̃1𝑟̃2𝑒𝑖2𝑄̃
 

Separating the real part and the imaginary parts of 𝑄̃,  

𝑄̃ =
Φ

2
+ iα/2 

 

where 

𝛼 =
4𝜋𝜅

𝜆
, 

and,  

Φ =
4𝜋𝑛

𝜆
𝑙. 

Therefore, 

𝑡̃ =
𝑡̃1𝑡̃2𝑒−𝛼𝑙/2𝑒−𝑖Φ/2

1 − 𝑟̃1𝑟̃2𝑒𝑖Φ𝑒−𝛼𝑙
, 

and thus, 

|𝑡̃|2 =
|𝑡̃1|2|𝑡̃2|2 𝑒−𝛼𝑙

|1 − 𝑟̃1𝑟̃2𝑒𝑖Φ𝑒−𝛼𝑙|2
. 

 

In the region of low absorption |𝜅(𝜆)| ≪ |𝑛(𝜆)| 

𝑟̃1 ≅ 𝑟1 =
𝑛0 − 𝑛

𝑛0 + 𝑛
, 

𝑟̃2 ≅ 𝑟2 =
𝑛 − 𝑛𝑔

𝑛 + 𝑛𝑔
, 

𝑡̃1 ≅ 𝑡1 =
2𝑛𝑜

𝑛𝑜 + 𝑛
, 

and 

𝑡̃2 ≅ 𝑡2 =
2𝑛

𝑛 + 𝑛𝑔
. 
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Therefore  

|𝑡̃|2 =
|𝑡1|2|𝑡2|2 𝑒−𝛼𝑙

1 − 2𝑟1𝑟2  𝑐𝑜𝑠 𝛷 𝑒−𝛼𝑙 + 𝑟1
2𝑟2

2 𝑒−2𝛼𝑙
 

On the other hand, the intensity or flux of energy of a plane electromagnetic wave in any 

non-magnetic material is equal to the magnitude of the Poynting vector: 

𝐼𝑚 = |𝑆𝑚| = |𝐸⃗⃗||𝐻⃗⃗⃗| =
𝑛𝑚

𝜇𝑜𝑐
|𝐸⃗⃗|

2
 

where 𝑛𝑚 is the real part of the refractive index of the non-magnetic material.  

 

Now, the transmittance through the film 𝑇𝑓 is the ratio of the transmitted intensity to the 

incident intensity, that is,  

𝑇𝑓 =
𝑛𝑔𝐸𝑇

2

𝑛0𝐸0
2 =

𝑛𝑔

𝑛0

|𝑡̃|2. 

Finally, substituting the expression for |𝑡̃|2 and using 𝑅1 = 𝑟1
2 and 𝑅2 = 𝑟2

2 yields 

𝑇𝑓 =
𝑛𝑔

𝑛0

|𝑡1|2|𝑡2|2
𝑒−𝛼𝑙

1 − 2𝑅1
1/2

𝑅2
1/2

 cos Φ 𝑒−𝛼𝑙 + 𝑅1𝑅2 𝑒−2𝛼𝑙
 

On the other hand, the transmittance from air to the film is, 

𝑇1 =
𝑛

𝑛𝑜
𝑡1

2 =
𝑛

𝑛𝑜
(

2𝑛𝑜

𝑛𝑜 + 𝑛
)

2

, 

whereas the transmittance from the film to the substrate is, 

𝑇2 =
𝑛𝑔

𝑛
𝑡2

2 =
𝑛𝑔

𝑛
(

2𝑛

𝑛 + 𝑛𝑔
)

2

. 

Thus, the transmittance from the air to the glass through the film is, 

 

𝑇𝑓 =
𝑇1𝑇2𝑒−𝛼𝑙

1 − 2𝑅1
1/2

𝑅2
1/2

 𝑐𝑜𝑠 𝛷 𝑒−𝛼𝑙 + 𝑅1𝑅2 𝑒−2𝛼𝑙
 

 

Since the thickness of the glass substrate is too large, considering incoherent multiple 

reflections, the transmission through the glass substrate with 𝛼𝑔 = 0 is 

𝑇 = 𝑇𝑓

𝑇3

1 − 𝑅2𝑅3
 

Where 
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𝑇3 =
𝑛0

𝑛𝑔
(

2𝑛𝑔

𝑛𝑜 + 𝑛𝑔
)

2

 

and 

𝑅3 = 𝑟3
2 = (

𝑛𝑔 − 1

𝑛𝑔 + 1
)

2
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