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Preface

Minimal surfaces are among the most natural objects in Differential Geometry, and
have been studied for the past 250 years ever since the pioneering work of La-
grange. The subject is characterized by a profound beauty, but perhaps even more
remarkably, minimal surfaces (or minimal submanifolds) have encountered striking
applications in other fields, like three-dimensional topology, mathematical physics,
conformal geometry, among others. Even though it has been the subject of intense
activity, many basic open problems still remain.

The time scales theory projected by Stefan Hilger in 1988 unifies the study of
continuous and discrete analysis. Since then, it has been used intensively by many
researchers working in different areas of mathematics. The main goal of this book
is to find suitable time scale analog of minimal surfaces. This class of surfaces is
considered in the context of the dynamic geometry on time scales.

The book contains four chapters. In Chapter 1 we introduce a complex integral
with a real variable and some of its properties are derived. Countour integrals are
defined and some of their properties are proved. Chapter 2 is devoted to the lo-
cal theory of minimal surfaces on time scales. Parametric surfaces, nonparametric
surfaces, first and second fundamental forms of a surface, surfaces that minimize
area are introduced and developed. A time scale analog of the Bernsten theorem is
formulated and proved. In Chapter 3 we introduce the global theory of minimal sur-
faces on time scales. They are defined o1-n-manifolds and some of their properties
are deduced. The main equation of a minimal surface on time scales is derived. The
Gauss map is defined and some of its basic properties are deduced. The Gauss cur-
vature and the total curvature are introduced and investigated. Chapter 4 is devoted
to a variational approach for studying minimal surfaces on time scales.

The aim of this book is to present a clear and well-organized treatment of the
concept behind the development of mathematics and solution techniques. The text
material of this book is presented in highly readable, mathematically solid format.
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Chapter 1
Complex Integration on Time Scales

1.1 Complex Integral with a Real Variable

Let T be a time scale with forward jump operator and delta differentiation operator
o and A, respectively. Let also, [a,b] C T. Consider a complex-valued function of a
real variable ¢

f@t)=u(t)+iv(t), t€la,bl,
where u,v € 6,4([a,b]).
Definition 1.1. The integral of f from t = a to ¢ = b is defined as follows

b b

./bf(t)At:/u(t)AH-i/v(t)At.

a a

Remark 1.1. Since u,v € 6,4([a,b]), we have that both integrals

b b
/u(t)At and /v(t)At

b
exist and then the integral / f(£)At is well defined.

Example 1.1. Let T = 2", Consider
ft)=@E+1)it, te(l,8].
Here

o(t) =2,
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Let

We have

and

Hence,

1 Complex Integration on Time Scales

1

hA (1) = ?((G(t))2+tc(t)+t2)
= %(4t2+2t2+t2)
=7, rell,8],
§(0) = 5(0() +1
(2t +7)
=t, te]l,§]

/Sf(t)At

1

8 8
/u( )At—HI/ V(1) At
8

/ +1At—|—l/tAt

1

1
= [ K ()Ar+i [ g2 (r)Ar
Jprvs]

1=8
+ig(t)

=8
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1.1 Complex Integral with a Real Variable 3

1, )
= (=t +t
Gl

= <7+8—7—1>+i(8—1)

=8 =8

t=1

560
= — +8i.
7
The basic properties of a complex integral with a real variable of integration are as
follows.
1.
b b
Re/f(t)At = /u(t)At,
a a

Proof. We have
b b b
/ F(0) AL = / W(t) At +i / V(1) A,

whereupon we get the desired result.

2. Let

fi(t) :u.i([)+ivj(t)a tE[a,b],

yi =aj+ibj, je{l,2},

where u;,v; € €,4([a,b]), j € {1,2}, are real-valued functions and a;,b; € R,
j €{1,2}. Then

b

b b
Joh@+npoac=n [ fioaen [ £Ear

a

Proof. Note that

Re(y;fj(t)) = aju;(t) —bjv;(1),
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Im(y;fi(t)) = ajv;(t)+bju;(t), je{l1,2}, t€la,b],

and

Yf1(t) + 1fa(t) = (@ (t) +agva(t) —bivi(t) — bava(t))

+i(a1v1 (t) +biuy (l‘) +a2v2(t) +b2u2(t)), re [a,b].

Hence,

b

b
/(Ylfl () + nfa(t))At = /(am (1) + azua (1) = byvi (1) = bava (1)) At

b
+i/(a1v1(t)+b1u1(t)+a2v2(t) + botn (1)) At

a

b b b b
—a (/ul(I)At—H/vl(t)At) s (—/v](t)At—i—i/u](t)At)

b b b b
tas ( / (1) A+ / ww) by ( / va(t) At +i / uz(t)At)
b b b
_ al/fl(t)AtJribl (/ul(t)AtJri/vl(t)At)
b b b
+a2/f2(t)At+ib1 (/uz(t)At+i/v2(t)At)

b b b b
. / A1) AL+ ib) / A A +a / B(0)AL + by / B(0)Ar
b

b
_ (a1+ib])/f1 (t)At+(a2+ibz)/f2(t)At

b b
= Yl/fl(t)At+J/z/f2(t)At.

This completes the proof.
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1.2 Definition of a Countour Integral 5
b b
[road < [iroar
Proof. Note that
b b
[roar = [ roar,
a a
where
b
¢ = Arg (/f(t)At) .
a
Hence,
b b
/f(t)At =Re /e*"“’f(t)At
a a

This completes the proof.

1.2 Definition of a Countour Integral

Consider a curve C which is a set of points z = (x,y) in the complex plane defined
by

where x,y € €),([a,b]). We can write

z2(t) =x(t) +iy(t), t€la,b].
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Definition 1.2. A countour is defined as a curve consisting of a finite number of
smooth curves joined end to end

Definition 1.3. A countour is said to be a simple connected contour if the initial and
final values of z(¢) are the same and the curve does not cross itself.

Suppose that

f(2) = u(x,y) +iv(x,y),

dz = dx—+idy.

Definition 1.4. The countour integral of f(z) along the contour C is defined to be
the integral

b
[0az= [ o mar, (1.1
C a

where
A =x2()+iy* (1), t€]ab).

The contour integral (1.1) can be represented in the form

b
[ 1@az= [(uxte),(0) + x(e),yO) 0+ 4 (1) A¢
C a
b
— [ @l0)5(0) () = (x50 (1)

b
+/(M(X(f)7y(f))yA (1) +v(x(1), y(1))x* (1)) At

By the usual properties of real line integrals, it follows the following.

1. / f(z)Az is independent of the parameterization of C.

c
2.

[ r@az=~ [ r@az,
-C Cc

where —C is the opposite curve of C.
3. The integrals of f(z) along a string of contours is equal to the sum of integrals of
f(z) along each of these contours.
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1.2 Definition of a Countour Integral

Example 1.2. We will evaluate

/IZIzAz,
C

where
x(t) =t,
C:
y@) =r+1, re[l,9].
We have
o(t) = 3t,
() = (x(0)*+ (y(2))?
=4 (t+1)
=242 4241
=202 42 +1,
z(t) = x(t) +iy()
=t+i(t+1), te€][l,9],
and
Az(t) = At +iAt
= (1+i)Ar, re][l,9].
Let
(t) = 2ol e 1,9]
g - 13 2 9 ) .
Then

§(1) = (0] +10()+7) + 3 (0(0) +1

2 1
= E(9t2+3r2+t2)+§(3t+t)+1

20042t 4+1, tel1,9).
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8 1 Complex Integration on Time Scales

Therefore

9
/\z|2Az = /(2z2+2z+1)(1+i)m
C 1
9

_ (l+i)/gA(t)At

= (14i)(112+48)

= 160(1+1i).

Theorem 1.1. Let M be the upper bound of | f(z)| along C and L be the arc;length
of the curve C. Then

/.f(z)Az <ML.

C

Proof. We have

[1@ad = | [ £ae)2 war

c a
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1.2 Definition of a Countour Integral

= ML.
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Chapter 2
Local Theory

Suppose that T, Ty, T,, Tj, ']T(]), ']T(2>, ']T(3> are time scales with forward jump
operators and delta differentiation operators o, o1, 02, O3, O(1)> 0(2)> O(3) and A,

A[, AQ, A3, A(l)’ A(z) and A(3>, respectively. Let / Q T, U, U],W] Q T] X Tz, U,
W, C T(l) X T(2> X T(3) andV C T x T, x T3.

2.1 Parametric Surfaces

We will denote by x = (x1,x2,x3) a point in T 1) x T3y x T 3).
Definition 2.1. Any smooth map x: U — Ty X T(3) x T(3),
x(ur,u) = (e (ur, u2),x2 (ur,u2), x3(ur,u2)),  (ur,u2) €U,
is said to be a oj-parametric surface if x is 01-completely delta differentiable in U.
Denote the o1-Jacobian of the mapping x by
M = (mij)

axl 8x1 o1

Auy Auy
3)62 8)62 o1

A up A up
(9)63 aX3 o1
A 23] A u
For any two vectors

y=1,y2,y3) and z=(21,22,23)

of T(1) x T2y X T(3), we denote the inner product by

11
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Y2 =y121 +Yy222 +y323

3
=Y vz
=1

and the cross product

yXz= (det<y2y3),—det<yl y3),de
223 2123

Now, we introduce the matrix
G=(gij) =M"M.
For G, we have the following representation

T
8x1 8x1 o 8x1 (9)61 1

(12
unz))

2 Local Theory

Auy Auy Auy Aup
Go | 9 du® | | 9n on®
Aup Aup Auy Aup
(9)63 aX3 % aX3 ax3 i
Aup Aup Auy Aup
8x1 8x1 o1
on 0x 0x3 N\ [ Aup Auy_
_ Aulg Aulc Au]o_ @ % !
a0 0x T Auy Auy
Auy Auy Auy % %1
Am AM2
o0x1 2+ 0x> 2+ ox3 \? ox1 dx Gl+ dxy; dxp ! %%Gl
_ Aul AM] Au1 Aul Auz Au1 Auz Al/l] Auz
dx; 9x1 %0 Oxp I %' Ox3 Ixz O [ dx; O 2+ dx, & 2+ %Ul 2
Au1 Auz Au1 Au2 Au1 Au2 AM2 Auz Aug
ox o
For the cross product of the vectors — and —— , we have the representation
Auy Auy

8x 8x o1 <8x1 8x2 aX3> % <8x1 o1 aX2 1 aX3 G')

—_ >< —_ S —— —_ [E—
Au1 Auz Aul’Aul’Aul Au2 ’Auz

,Auz

rmrm Auy Aup ’TIQ Auy  Aujp Auy ’TmAuz

B (axg 0x3% 9x3 Ix2 ' Ix1 % dxz  Ix; Ixz %' Ix; @G‘

We have the following o|-Lagrange identity.

_On " ox
Auy '

Auy
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Theorem 2.1. Let x : U — T (1) X T2y X T(3y be o1-completely delta differentiable.
Then the o1-Lagrange identity holds

2
ox dx %
X

detG = —
¢ Au1 Auz

Proof. By the representation of the matrix G, we find

B ox; 2 Jx 2 0x3 2 ax; & 2 dx; ! 2 dx3 ! 2
detG((m) ) ) G ) () + ()

Ixi 90 % 0w dx | O 9x 7

Au1 Au2 Au1 Au2 Au1 Au2

7@2@612+@2@‘“+82%"12
N Au1 AM] Au1 Au2 Au AM2
(RN (RN, (2 (9T, (2 (n Y
Am Au2 Aul Au2 Au1 Auz
(22 (TN (9m) (9T, (9m) (9n Y
Aul Au2 Au1 Auz Au1 Auz
axl 2 %61 2_ @ 2 8)(72 ax’% 2 %0‘1 2
Aul Auy Auy Au2 Au] Aup

8x1 3)62 8x1 ‘8x2 28)61 8x1 o1 a)q aX3

Aul Au1 Au2 Au2 Au1 Auz Au1 Auz

sz (9)62 o1 (9X3 a)C3 o1

Aup Auy  Auy Aup

 Aup Aup Au2 Au;  Aujp Aup Au1 Au2 TMQ Auy

B @%01 dxz dxp ! 2+ 8x1 %1 9x3 9dx; I3 2+ dx; dx %' 9x Gl@ 2
a Au1 Au2 Au1 Auz

ox dx °1|?

= |— X —
Au] Auz

This completes the proof.

Theorem 2.1 combined with the elementary properties of the rank of a matrix, gives
the following equivalence.

Corollary 2.1. Let x : U — T () X T 3) X T (3) be o1-completely delta differentiable.
At each point of U the following conditions hold.
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dx dx © )
1. The vectors — and ——  are independent.
Auq Auy

2. The oy-Jacobian matrix M has rank 2.
3. There exist i, j € {1,2,3} so that

8)6,‘ 3x,- o1
Au] Auz
det ﬂ %Ul 750
Auy Aup
dox ox &
4, — x — 0.
Au1 X Au2 7&
5. detG > 0.

Corollary 2.1 motivates us to give the following definition.

Definition 2.2. A surface S is said to be o}-regular at a point of U if the conditions
of Corollary 2.1 hold at that point. The surface S is said to be oj-regular on U if it
is op-regular at each point of U.

Now, we will give definitions for a smooth map, a ¢j-homomorphism and o©;-
diffeomorphism.

Definition 2.3. We say that a map g : W; — W, is a smooth map if it is continuous
and its A and A, partial derivatives exist and are continuous on Wj.

Definition 2.4. We say that a map g : W, — W is a smooth map if it is continuous
and its A1), A(y) and A3) partial derivatives exist and are continuous on W>.

Definition 2.5. We say that a map g : W; — W, is a time scale 61-homeomorphism(shortly
o1-homeomorphism) if it has the following properties.

1. g is a bijection, i.e., one-to-one and onto.
2. g is continuous.

3. the inverse map g~
4. 1f

! exists and it is continuous.

g:(g1782ag3)7 g71 :(GlaGZ)a
then

gj(o1(um),u2) = gj(ur,02(2)) = 0(;)(g;(wr,u2)), je€{1,2,3}, (2.1

(u1,up) € Wy, and

= Gj(uy,up), 03 (um))) (2.2)
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(u(1y,u(), u3)) € Wa.

Definition 2.6. A map g: W; — W, that satisfies (2.1) will be called 0106,0(1)0/2)0(3)-
map.

Definition 2.7. A map g: W, — W, that satisfies (2.2) will be called 6(;)0(5) 0(3) 0102~
map.

Definition 2.8. A map g: W) — W, is called a time scale o}-diffeomorphism(shortly
o1 -diffeomorphism) if the has the following properties.

1. g is a o1-homomorphism.

2. g and g_l are smooth maps.

Suppose that S is a smooth surface given by x = x(u), u € U and

u= (U, U, U3) U—U

be a o -diffeomorphism of U onto U. Set

U= (u(1),U),U3)) € U.

Definition 2.9. We say that the surface S defined by
x=x(u(@), @el,

is obtained from § by a change of parameters.

Definition 2.10. We say that a property of the surface § is independent of parameters
if it holds at corresponding points of all surfaces S obtained from S by a change of
parameters.

We have

x = x(u(u))
= (1 (u(@)), x2(u(u)),x3(u(u)))
= (1 (1 (1), w2y, uz)) s wa (ugry, w2y, u3)))s

x2 (w1 (u(ry, u2), u) ) w2 (), u), us)),
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x (e () 2y 3y ) 2 (g gy ), () ey, ugs)) € U

For the partial derivatives of x; with respect to the variables u(), j,! € {1,2}, we
have the following representation

8xj o 8xj 8u1 8xj o1 8u2

= — — . j,le{l,2}.
AM(Z) Au1 Aum Auz AM([) J { }
Let
(9141 8u1
_ | Auqy Augy
P= Jduy Jdup
AM(]) AM(z)
Then _
M = MP,
whereupon
G=MM
=P"M"MP (2.3)
= PTGP.
Hence,

detG = det(PTGP)

= (detP)?detG.

By the last equation, it follows that the property S being oj-regular at a point is
independent of parameters.

Let now, U; be a subdomain of U so that U; C U, where Uj is the closure of U .
With X we will denote the restriction of the surface S given by x = x(u), u € X.

Definition 2.11. Define the area of X to be

A(X) ://\/MAMA@.
0y

If u = u(i) is a change of parameters and U; maps Uy, then

A(Z) ://\/@ALMZ
Uy
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— //\/detG\detPMﬁlAﬁz

Ui

://vdetGAulAuz
U

= A(Z).

Thus, the area of a surface is independent of variables.
Let j and / be any two fixed integers from 1 to 3. Let also, U be a domain in the
xj,x;-plane. The equation

xk:fk('xﬁxl)v k€{17273}7 k#.ﬁ k#l/
define a surface in T(j) X T(g) x T(3).

Definition 2.12. A surface defined in this way will be said to be given nonparametric
or explicit form.

In order for a surface to be expressible in nonparametric form, it is necessary for the
projection map
(x1,%2,x3) = (x),x7)

to be one-to-one. This is not true in the general case for the whole surface, but we
have the following important theorem.

Theorem 2.2. Let S be a surface given by x = x(u) and let a € T| x Ty be a point
at which S is regular. Then there is a neighbourhood A of a such that the surface
X obtained by the restriction x(u) to A has a parametrization X in nonparametric
form.

Proof. By Corollary 2.1 3) and the inverse image theorem, we conclude that there
exists a neighbourhood A of @ in which the map (uj,u2) — (xj,x;) is a oy-
diffeomorphism. If x = x(u) is a smooth map, then the inverse map (xj,x2) —
(u1,up) is also smooth and the same is true of the composed map

(xj,x/) — (ul,uz) — (xl,xz,xg), 2.4

which defines X. This completes the proof.

By Theorem 2.2, we conclude that when we study the local behaviour of a surface,
for convenience, we can assume that the surface is in nonparametric form. Note that
the parametrization (2.4) shows that in a neighbourhood of a ¢j-regular point the
mapping x = x(u) is always one-to-one.

In order to study more closely the behaviour of a surface near a given point, we
consider the set of curves passing through the point and lying on the surface.

Definition 2.13. By a curve C in T() X T(3) x T(3) we mean a continuously differ-
entiable map
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¢ . [Ot,ﬁ] — T(l) X T<2> X T(3), 2.5)

where [or, B] C T. We will use the notation

¢ =00)

= (1(2),92(1),93(1)), 1€ [a,B].

Definition 2.14. The tangent vector of the curve C at the point 7y € [, 3] is the
vector

9% (t0) = (91 (10), 9 (10), 95’ (10)).-
The curve C is said to be regular at 7 if (])A (to) # 0. The curve C is said to be regular
in [0, B] if it is regular at each point of [et, f].
Now, suppose that S is a surface defined by x = x(u), u € U, and a curve C is given
by (2.5).
Definition 2.15. We say that C lies on S if

¢([a, Bl) Cx(U).

Since we are interested in local study of S, we choose any point a at which § is
regular, and let us restrict x(a) to a neighbourhood given in Theorem 2.2. We shall
denote this restricted domain by U, and the surface by S. Then, we have the repre-
sentation (2.4) and the mapping x = x(u) is one-to-one in U. Consider the set of all
curves C which lie on S and pass through the point b = x(a). Assume that there is a
point #y € [, B] such that for each curve C we have

(P(t()) =b.

By (2.4), it follows that each such curve corresponds to a curve u = u(t) in U for
which u(fy) = a. Conversely, to each curve u = u(t) in U with u(fy) = a corresponds
acurve ¢(¢) = x(u(r)) on S with ¢ (t9) = b. Then, for the tangent of C we have

0% (10) = 2 () (1) + - () o).
uy 2

Theorem 2.3. Af a regular point of a surface S, if we consider the set of all curves
which lie on S and pass through this point, then the set of their tangent vectors at
the point forms a two dimensional vector space.

Proof. Since we can find curves u = u(¢) in U such that
u(tp) =a

and u4 (19), u5 (1) take arbitrarily assigned values, it follows that the set of tangent
vectors x* (19) consists of all linear combinations of the two vectors
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ox d dx %
—— and — .
A up Au2

By Corollary 2.1, it follows that these vectors are independent and therefore span a
two dimensional vector space. This completes the proof.

Definition 2.16. The vector space described in Theorem 2.3 is called the tangent
plane to the surface S at the point b = x(a) and it is denoted by IT or I (a).

Therefore, a surface S has at every regular point a tangent plane, which is indepen-
dent of parameters. For the length of ¢2, we have

047 = 9492
dx 4 Odx o1 A dx 4  Odx 1 A
= <Aulul+AM2 U |- rmul+rm I25)
x \? ox dx % dx o\ 2
= () ot o2 () (i )t (d )
2

}: A A
Fl,'jul- I/tj s
ij=1

where

P dx \ 2
m= )
Fiio = Fia

_ Odx Ox o
o Auyp Aup

ax o\ ?
Fioo = | — ,
L
i.e., the length of ¢ is expressed with a quadratic form with matrix (Fj; ;). This
quadratic form is referred to as the first fundamental form of the surface S. The

determinant of this form defines areas on this surface. The length of the curves on
the surface S are obtained by

B
L= [lo*®lar.

For an arbitrary curve C, denote
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fo

sito) = [ 164/

We have
54 (10) = 0% (10) > 0, 19 € e, B,

and we have the monotone mapping
s: e, B] — [0,L]. (2.6)
If the curve C is regular, then
s%(t0) = 9% (10)| > 0

and the map (2.6) has a differentiable inverse 1 = ¢(s). The composed map
- 1(s) o)
¢(s) : [0,L] = [o, B] = T(q) x Tg) x T3

defines a curve C which is called the parametrization of C with respect to the arc
length.

Now, suppose that S is a surface given by x = x(u), x € €*(U), and let S be o-
regular at the point b = x(a). Let IT be the tangent plane to S at b and let IT* be its
orthogonal complement which is a 1-dimensional space called normal space to S at
the point. Each vector is determined by its projections on IT and IT~.

Definition 2.17. An arbitrary vector N € IT+ is called a normal to S.
dx o

A normal vector N to S is orthogonal to —— and —— . Suppose that
Auy Auy

X = X(M](S)7u2(s))7

MJ(G(S>) = O-j(uj(s))7 seT, je {1,2}7
and o is A;-differentiable on T;. Then

dx ox duy n dx % duy
As  Auy As  Aur As’

dx _ d (0xdu | ox°du
As?2  As \Au; As  Auy As

T A2 Aw | As \ Al As Awdw As

erzuz 8x o1 + duz(y (9 8x o1 du1 + 8 ax o\ du2
As? Auy As Aup \ Aup As  Aup \ Aup As

d*u; ox duy° (82x duy 2x du2>
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B d*uy dx  d*up Ix ©

T OAS? Ay As? Aup
du?duy x| dwi®duy _9’x *
As  As Au}  As  As AuAup

010
3% 'V du, © duy

(dmdn® 9 (9x N O
As As Aup \ Aup Au? As  As’
Hence,

dsz_dzul 8xN +d2u2 ox GIN
As2 T As? \ Ay As? \ Aup
duy ®duy [ 9*x du1®du %
+o S (22 y) S22 N
As As Auy As As \ AujAuy
Ldwdn® (9 (9x Y N (0%TT ) din®du
As As Auy \ Aup Au% s S
du; °duy ( 9*x du; ® duy %
=— — (SN +— = N
As  As Au% As  As \ AujAuy

+du1 dug6< 0 ( ox Gl)N) N <82x6161N> @Gduz

as 4s \am \ A A

s s
:bll(N)%GdA—usl +b12(}\})%“%
+b21(N)%%6+b22(N)%6%7
where
bi1(N) = jZN’
bia(N) = AZZAXMIGI
bx(N) = Aiul (Aa:;m)
by (N) = e

21
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22
Note that
ds\?
=) =110
(%) -wo
2
= Z Fyjju; u]A-,
ij=1
du,' A 1 .
E u; %, 16{172}
Hence,
d*x duy ° duy duy ° dup
—N=b11(N)— — —_— —=
As? 11( )As As 12( )As As
du1 dM2 du2 du2
+b21(N)EA7 bzz(N)E As
Ao, A Ao, A
u ui%u
= b (N)discdis + by (N)dis"djs
At At At At
MAMAG MAMAG
+b21(N) dlso'zds +b2(N) di szs
At At At At
1 A

ds%ds

= — (b”(N)u?GulA +b12(N)uqu2
At At

+byy (N)M? u?c + bzz(N)u? M§G> .

Definition 2.18. The quadratic form
b1y (N)ufcuf + blg(N)u?guf + by (N)u?ufc + by (N)ué‘ ufc

is said to be the second fundamental form of S with respect to V.

Set
T = E7
As
KN.T) = by (N)UAT U + byy(N)udud + by (N ud® + by (N)ul 1A

2
Yy FlijuiAu]A.
i,j=1

Definition 2.19. k(N,T) is said to be the normal curvature of S in the direction T
with respect to the normal vector N.
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Define

ki(N) = mj@xk(N,T),

ka(N) = mink(N,T).

Definition 2.20. k; and k; are said to be the principal curvatures of S at the point
with respect to the normal N. The average mean

ki(N) +k2(N)

H(N) = :

is called the mean curvature of S at the point with respect to the normal N.
Note that k; (N) and k,(N) are the roots of the equation
det(b;j(N) — AFy;j) =0,
or
det(F“j)?L2 — (Fi22b11(N) + Fi11b22(N) — Fi12b21(N) — Fi21b12(N) ) A +det(b;;(N)) = 0.
Thus,

_ Fi20b11(N) + Fi11b22(N) — Fi12b21(N) — Fi21b12(N)
2d€t(F1ij)

H(N)

Observe that b;;(N), i,j € {1,2}, are linear in N and then H(N) is linear in N.
Therefore
H(N) = HN.

Definition 2.21. The vector H is said to be the mean curvature vector of S at the
point.

If E is a unit vector of I, then
H=H(E)E.

Definition 2.22. A surface S is said to be a minimal surface if its mean curvature
vector H vanishes at every point.

Suppose that S is a minimal surface. Then H = 0 if and only if H(N) = 0 for any
N e IT+. Thus, a minimal surface is characterized in terms of their first and second
fundamental forms by the equation
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2.2 Nonparametric Surfaces

Suppose that o7 is A;-differentiable on T. In this section, we consider surfaces in
nonparametric forms. Assume that the surface S is defined by

x3 = f(x1,x), (x1,x) €Ty x Ty,

or equivalently
X1 = U

X2 = up 2.8)

x3 = f(ur,u2), (u1,uz) € Ty x Ty

Thus,
x = x(u)
= x(uy,up)
= (1 (ur,u2), %2 (ur, u2), f(ur,u2)),  (ur,u2) € Ty x Ty,
Then
o (102,
Aul Au1
ox af
Tuz - <O71’AMZ) )
(o] (o]
a0 (00,2
Auz Alzlz
ox \ 2
Fin = (x>
uj
af \?
dx dx %
Fii2 = rulruz
9f 9f
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ax O\ ?
Fipp=|—
122 < Aty )
af o\?
1+ (527
Auy
dx a
Remark 2.1. Note that the vectors A and A are obviously linearly indepen-
uj uz
dent.

Theorem 2.4. Let N3 € R be arbitrarily chosen and fixed. Then there exist unique
Ny, N, such that
N = (Ny,Ny,N3) € IT+.

Proof. Observe that the vector N € IT* if and only if

ox
- —_ :O
Au1
2.9)
dx °!
Lo,
Auz
Note that
ox af
N-— = (N;,N),N3)-( 1,0, —
Al/l] ( 1,4V2, 3) (7 7AM1)
af
=N +N;——
1+ 3Au1’
dx % af °
N-— = (N,Np,N3) (0,1, —
Al/lz ( 1,4V2, 3)() 7AM2 >
af
=N, +N3——.
L+ 3Au3
Hence and the system (2.9), we find
af
Ny = —N3—
1 3Au1
af
Ny = —N3——
2 3A1/l2 )
1.€.,
af  af<
N=N3|———,———
3( Auy’ Aup

This completes the proof.
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Corollary 2.2. Let S be defined by x = x(u), u € U, x € €*(U), b = x(a), a € U, be
a oy-regular point of S and let N be a normal to S at this point. Then there exists a
neighbourhood Q of a and N(u) € €' (Q) such that N(u) € IT*(u) and N(a) = N.

Proof. By Theorem 2.2, it follows that there is a neighbourhood Q of a in which the
surface S has a parametrization in the form (2.8). Let

N = (N13N27N3)7
where

af

Ny = —N3—,
1 3Au1

[

No=-N3— |, M eR

Auy

Then, N(u) has the desired properties. This completes the proof.

Next, we deduce

2 2
3%x @ Q%f

= )O) ) '7 e 172 M
AuiAuj AuiAuj> hJ { }

For any normal N = (N, N,,N3), we have

bii(N) = ZZMJ;N&

bia(N) = Aiuz (Aalfl)al N3,
i) = = (L7 ),
bn(N) = ZZJ;IGIM-

Then, the equation (2.7) for a minimal surface takes the form

af op\ 2 82]‘ (9f 2 aZfGlGI
(1 + <AM2 ) ) TLt%N3+ (1 + (Am) TM% N;
df af ' 9 (M)GlN of af» o*f 7

Auy _TMITI/Q AupAuy

Ns=0,

Auy Auy rm

or
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af(ﬁ 2 aZf 8f 2 aZfGIGI
(”(m ))M*(”(mﬂ) A

af af° 9 (af)"l of af % 9*f

- Ay - 7

Au1 Au2 Tm Au1 Au2 AugAul
Example 2.1. Let T; =T, = Z, T(l) = T(z) = T(3) =R and

x(u) = (ul,uz,fu%f3u1u2+u%), (u1,up) € Ty x Ts.

Here
o1(u1) = u +1,
oo (up) =up+1,
flur,up) = —uf —3uyuy +u3,  (uy,up) € Ty x Ty.
Then
Aa—lfl(ul,uz) = —01(u1) —u; —3up
=—uy—1—u;—3uy
= —2u; —3uy — 1,
j—i(ul,uz) = o2 (u2) +up — 3u;

=uy+14u, —3u;
= 2uy —3u; +1,

af

TMZ (ul,uz) = 2142—30'1(141) —1

=2u, —3u; —3+1

:2u2—3u1—2,

CAS S i B
up,u = ui,u
AulAbtz 2 AugAul b2

27

(2.10)
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= -3,
izuj%c(ul,uz) = -2,
Z?;(uhuz) =2,
Z?;l"l (u1,u2) = 2,

d af &
Aul(AI{Z >(u17u2):—3 (ul,uz)ETlez.

Then, the equation for a minimal surface takes the form

—2(14 (2us —3u; + 1)) +2(1 4 (2uy —3uy +1)?)

+6(2u; —3up + 1)(2up —3u1 —2) =0, (uj,up) € Ty x Ty,
or
—(2up —3uy —2)* + (2uy —3up — 1)*+3(2u; —3uz — 1) 2uz —3u; —2) =0,  (uy,uz) € Ty x Ty,
or

— (413 +9u3 +4 — 12uyur — Suy + 12u7)
+(4u% +9u§ + 1= 12uyuy — 4uy + 6uy)

+3(4uuy —6u% —4uy —6u%+9u1u2+6u2 —2up+3u1+2)=0, (u1,u2) €T x Ty,
or

—4u3 — 9u? — 4+ 12uur + 8uz — 12
+4ut +9u3 41— 12uquy — duy + 6uy

+ 12011y — 1813 — 12u; — 1813 +27ujuy + 18us — 6us +9u; +6 =0,  (u1,u) € Ty x Ts,
or

—23u? +39uqup — 13u3 — 19u; +26uy +3 =0, (u1,uz) €Ty x Ty.
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2.3 Surfaces that Minimize Area

Let 01 be A;-differentiable. Suppose that S is a oj-regular surface defined by x =
x(u),u e U,xe € (U). Let I be a closed curve which bounds a subdomain Q, and
let X be the surface defined by x = x(u) restricted to Q. Assume that the area of X is
less than or equal to the area of any surface X defined by X = %(u), u € Q, such that
%(u) = x(u) foru € I'. Let N(u) € €' (U) be a normal to S at x(u). Then

N()x

7 =0
Au1
(2.11)
ox !
9 .
Aup
We differentiate the first equation of (2.11) with respect to u; and we find
NOx N 0x
Aul Au1 AM]
whereupon
oN x|
Aup Auy AU
or ON 9x©
N ox !
——— =Dy 2.12
A Aun 11 (2.12)

Now, we differentiate the second equation of (2.11) with respect to «; and we get
ON oJx %1% d ax
_ 7)6 + N— 7)6 — ()7
Auy Aup Auyp \ Auy

or
WO 0 (02
Auy Aup Auy \ Aup 2.13)
= —by.

Now, we consider an arbitrary function 4 € €>(U) and for each A € R, we form the
surface
Sy xX(u) =x°"(u) + Ah(u)N(w), ueU.

We find

OF  oxe o 4 IN
= (N )

Auy Auy
0 ox oh oN
. XY g (2 g 0N
Auy (X+H1Au1> + (AM] + Au1>
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2
_ dx  dm Jx 1(,|3)§+A<8hN+hG]8N>
Auy

Tm Auy Aul Auy Auy

du\ odx o 0%x dh dN
e B BRI R A I el Ve
( + AM1> Aug tH Au2 +4 Auq + Auy
i dx % 9%x 9%x
= 1 — — J—
( +Au1><Au1 Haa L A2

Al —N+h°
+( - Aul)

+2 (N+ °1AauNl)
and
o A G )

Hence, employing (2.12), we get
- 9% 1\’
Fiii=|—
111 (Aul )
8,u1 ox o1
= 1 —_— —_—
( < + Aul) Aul +

2
2 (‘”’an o))

aul) 82
o]

Myt~ —

( ! Au%

Aul Au1
B ax o\ 2 am
o \2 [ %x\*
(717 ety o
+(u1 -G (AM%>

dm\ (9h .4 ONY Ix
+2;L <1 Au ><AM1N Au1 Au1

8.LL1 dx 01872)6
Auy ) Aug Au%
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d 9%x ah N
+24 (ul — U — Hl) ( +h% — > +)LZC]1

_ho_lb”>

Aul Au1 Auy

a.ul 01 ~ a[.il dh dx %1
(1—|— ) 111+p|]+2)t 1+7 TMINTMI

Au Auy

2
+2/1< — um)(%b +h"18N8 >+12c11

Auy uj Aul

= Fi + A% +Aqu + pin,

ie.,
Fiin = Fiin +A%cin +Aqu + pii,
where
- ou ou\ 9%x
=21+ — —
P < +Au1) (Ih H Hl >Au1
u 0%x
o1 _
+(u1 —” 1) (aul) ,
— ﬁN_FhGlaiN 2
= Au1 Au1 ’
o\ [ ok ax
=2(1+25 o
qi1 ( +Au1> (AulNAul —h bu)
o\ 9%x [ dh
2(p® =y - 2N
+ <.U1 R T >Au1 <Au1 +h
e u A OU au
P11 = Pl + M (H—Au]) F111+T 2+A
Next,
Fii2 = Fig
_ o v
Au1 Au2

_ du\ dx % o 9#1 9%x
= <<1+AM1) A Wy U .ul Aul

o ON
Au1

an)

>F111~
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dx %19 oh % ON %
_ Al — NOULLpo102
x (Au2 + <AM2 + Aup )>
B a dx % d%x o 90%x oh o IN

dx %19 oh o ON ©
_ 1 010
x( +A (A N°'+h " ))

TuZ u us
ol dx % 2%x\ ox % o 9%x dx 1O
= (14550 ) (o s o S
Am Am AM% Au2 AM%AM2
dh IN\ dx 2%
a2y ppe 2N ) X
+ (Am + Aul)Auz
au dx 9°%x o 0°x oh % ON %
Al (1428 (227 O o O (2B o e ON Y 9o
+ (< +Au1)(Au1 Mg ) T ae ) T, )T
_ 8“1 o] ~ 2
= 1+r Fih+Dpia+2Aqin+A%cin
uj
J oF ~
= (142K Fiia+th—2 ) + pro+ Aqia + A2ci
Au1 Au1

= Fin+A%cn+Aqi+pi,

where

dh JN oh ON %
= —N+h"—— | (= NO4hO%2_—
e (Aul + Au1> (Auz + Auz ) ’

_ 3“1)> d%x dx o191
= o1 — l_i'_i - ,

pi2 (“l H < Aur ) ) A Auy

8,u] 8[11 8F112 ~

TMI—F.UITM Auy + P12,

0107
o= (L 20 2

P12 = Fip

Au1 Au1 TLQ
0 dx % 92 02 oh JIN !
+ 1+ﬂ 9% f”l% +“1017)§ — NOlpoi02
Auy Auy Auy Auj Auy Auy
Moreover,

- 9% 1\°
Fiop = —
e (27
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2
= ( dx 1! +A <ahGIN61 +hG1GZaNGI)>

Auy Aup Auy
dx %191\ 2 ox %1% [ 9 ON °
= — 20— — N+ A2
(Au2 ) + Auy (Au2 + Auy )+ 2
= Fo)+Aqn+A%cxn
d0F1»n
= Fix + W 1 +Agn+A%en
Auy
= Fim + A%+ Agn + paw,
where
oh ° IN o\ ?
- = NGI JO102
2 (Auz + Au2 ) ’
dx %1% [ 9p JdN
=2 — NGOt L po102
92 Au2 (Au2 + Au2 )
o dFin
P22 1AM1
Hence,

det(F;j) = Fi1Fa — FiaFa
= (Fin +A%c11 +Agqu +pir) (Fioa + A%cn + g2 + pa)
—(Fii2 +A%c12 + 2q12 + p12) (Fia1 +A%ca1 +Aqa1 + par)
= FintFin + A*Fiien + AFi1ign + Fiipn
+A%e1Fim + Ateriean + A criga + Aeripa
+Aq11Fin + A qiic + A2 q11922 + Aq11p22
+piFi2 +A*prica +Ap11gan + pripn

—Fi12F121 — A*Fiiaca1 — AFi12ga1 — Fiiapa

33
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—A2c1aFia1 — Ateiacar — Adcinga — Aerapa
—Aq12Fi21 — A2qiaca1 — A2 qi2qa1 — Aqiz2pa
+p12Fi + 121712021 +Ap12g21 + p12pai

= A*(cricn —cnnear)
+A3 (C11q22 +q11c2 — g 6]12621)
+A? (Fmsz+C11F122+611P22+q116]22+P11€22F112621
—c12F121 — c12p21 — q12921 +P12€21>
+A <F111q22+q11F122+6111P22+P11422—F112421

—q12F121 — q12p21 +P12421>
+Fi1Fi22 — FiioFiai +Fiipa + puFioa +piipa
—Fi12p21 + p12Fi21 + prapai

= A*(crien —cnnear)
+A3 (6116]22 +q1i1c2 —ci2q21 — 61126‘21)
+A? (F111€22+611F122+C11P22Jrqncnz +pucn —Fcea
—c12F121 — c12p21 — q12921 +P12€21>
+A <F1116122+q11F122+6111P22+P11€/22Fnzqzl

—q12F121 — q12p21 +P12421>
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+det(Fi;j) + Fiiipn+puFin+ pupn
—F1op21+ pr2Fio1 + prapar-
Observe that
C11€22 —C12C2]
2 c (o3
= oh +h0187N ﬁ IN h6162 oN !
Au1 Auy Auy Auy
oh ON\2 [ ah ON o1\ ?
N+ ho — —— NOUL 4 p0102
Au1 Aug Aun Auy
=0
and

€11922 +q11¢22 — €12921 — q12€21

oh IN\? 9x “1% [ 9h ON
=2 per— ) —— NO o102
(Aul + Au1> Auz (Auz + Auz )

du\ (on  ox T
+2((1+Au1> (AulNAu] —h b11>
8/.L1 9%x [ dh o IN
+< N >A<AN+hA

L po10 N ! >

X
Lt2 A up

oh % oN
2 — N1+ K% —— NOt L po102 —__
<AM1 + Au1> (Auz + Au2 >
Ix 010]
X —_
((Aul Au1> Au2
a dx % 9%x o 0% oh % ON %!
14+ === = == | —— NOi ppo102
<< +Au1) (Am IJIAM%> T Au? Auy + Aup

2
=2 ﬁ 3N ﬁclcl ﬁGlNﬁl +h0102 N s
Ui Aul Auy Auy Aup

ox O oh aN °\*
1+— N—/— —h%p — NO 4 p%1%2
< +Au1) (Au] Auy 11) (Auz + Aup )

+
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o\ 9% [ oh N\ [ oh IN o1\ 2
2 Ol - — | — [ —N+hr1— —— NOU 4 po102
Bt G ulAm) Aud \ Auy * Auy Auy + Auy
2 (X o (e}
) ﬁN_i_hUlal ﬁ o % ]Nﬁl_i_hclazgl 1
Aun Auy Auy

o] O] o\ 2
H_au)(&hN&x _halbu)(ah Nc]_i_hclcz()]\])

ATH Tm Auz Auz

(
(S 3
(
(

aw\ 9%x [ oh N\ [ oh © IN O\ ?
Ot _ oy —uy ) 2= 2N po —— NOULppo102
oo — =i )Au% au " A )\ B T A

Let

ap = det(F;;) + Fiiip + piiFia2 + pupz
—Fuapa + piaFioi + papar,

ar = Fii1g22 +quiFi22 + quip2n + piriga — Fiiaga
—q12F121 — q12p21 + p12g21,

ay = Fiiiem +ctiFiza +cuipa2 +quiga + prica — Fiipean

—c12F121 — c12p21 — q12921 + p12¢21.

Therefore _
det(Flij) = az)tz + a1 A +ap.

Since S is o7-regular, we conclude that ap has a positive minimum on é and using
that a;,ay € €(U), we have that there exists € > 0 such that det(Fi;;) > 0 for || < &
and u € Q. Thus, for |A| < €, the surfaces X, defined by restricting ¥(u) to Q, are
o1 -regular surfaces. Note that

~ aj 2
‘\/detF1ij—<\/6T0+2\/éTol>’<M7L, ueQ, 2.14)

for some positive constant M.
Now, we consider a surface in nonparametric form

X3 = f(xl,XZ), (X],XQ) ev,
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where f € €%(U). Introduce the notations

af
o — ~J
p Ax,
_9f
q_sza
°f

r = 2
Axj

o (a0
= Ax; \ Axy ’

f— 9 (917
o sz sz ’
aZfGI

[l = .
szAX]

Then, the equation (2.10) for a minimal surface takes the form

I pCl 24g°! 9]
(1+(¢°)%) ALxl+ (1+(p°)?) (Aqxz )

Ol
_pO1 O'lgi_ o] Gli

0101\ = ()
v Ao (p°r)
or
(1 +(Clm)2)r+(1 +(p°)?)t = p®q°s+p°q°l,
or
(1+(q61)2)r7p61q61 (s+10)+ (1+(p6‘)2)t:0.
Next,
Fiiy =1+ (p®)?,
Fiip = p®q°,
Fi = 1+(¢%)?
and

det(Fiij) = FintFioa — Fip

= (%)) (1+6)) - (74

37
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= 1+ () + (™).

Let

WO =\ /det(Fij).
Then

(WO)? = det(Fy;;).
Set

f=f+Ah, LER,

where h € €2 (U) is an arbitrarily chosen function. Then

dh
POl = p%l 4} —
p P+ Ax;’
[
qo'l =q°‘+lﬁ 1,
sz

whereupon

(WO =14 (5°)* +(q™)?

on\? oh O\?
:H—(PG'—F?LAXI) +<q°'+7Lsz )

oh oh \? oh ° oh O\
— (o] 2 617 2 o (e]] 2 0'17 2 _
1 (P 2007 g 22 () o oage gt 12 (e )

oh oh Oh\2 [ ano\?
— (9] 2 (o oy _~ 2 o _
(Wo)7+24 (p AX; +a Axo ) +2 ((Am) * (sz ) )

= (WO)2 424X +A%Y,

where
oh oh %
X = por— o
P AX1 1 AX2 ’
on\% [ oh°\?
Y= — — .
(AX1> * (sz )
Thus,

~ X
o] __ (o] 2
WO =W Ao +A7Z,

where Z is a continuous function of x; and x».
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39

Now, we consider a closed curve I' in the domain of the definition of the func-
tion f and let A be the region bounded by I'. If the surface x3 = f(x;,x2) over Q
minimizes the area along all surfaces with the same boundary, then for any choice

of h such that # = 0 and #°! =on I', we have

// VNVGIAxlezz// WOl Ax | Axy,
1] o
// 7A)C1A)C2>O

which is possible if

Substituting in the above expression X, then integrating by parts and using the 2 =0

and h° =0on I, we find

P L a7 on®
= —_ Ax1A
// (Wcl Axq WGl Axo 140
0'1 8 qcl
W' — — | =— | h° | Ax;A
// ( A1)C1 (W61> Axo (W61> ) 8%
1 J C]G'
— h%1 Ax A
(5 )+ 2 () e ama

o (p° o (¢°
(L) (I )~
Ax; \Wor ) " Ax, \ W

2.4 o;-Isothermal Parameters

whereupon

Definition 2.23. Parameters u; and u, for which

Fii1 = Fip,

Flip=0

(2.15)

are said to be oj-isothermal parameters. In other words, the parameters u; and u;

are said to be o;-isothermal of

Flijzkzéijv i7j€{1a2}7

where A = A(u) >0,u € U, and §;j, i, j € {1,2}, are the Kronecker coefficients.

Suppose that u#; and u; are o;-isothermal parameters. Then

det(Fll-j) 114
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and

22511 (N) + A2bys (N)

HN) 224

_ b]l(N) —l—bzz(N)
o 242

Definition 2.24. o;-Laplacian is defined by

2 o1\ O1
g P 0 (5
Auy Auy \ Auy

for any x € €*(U).

Theorem 2.5. Let S be a 6-regular surface defined by x = x(u), u € U, x € €*(U),
where uy and uy are o1-isothermal parameters. Then

A% x=—2)"H. (2.16)

0%x 0 ox N\
AN = | — + — | — N
* (Au% + Au2 <Au2 > >

02 0 dx N\
Sy, 9 (2T
Auj Auy \ Aup

Proof. We have

= —by (N) 7b22(N)
= —2A%H(N)

= —2A%HN,
whereupon we get (2.16). This completes the proof.
Definition 2.25. A function x € €*(U) is said to be ¢;-harmonic if
A°x=0 on U.

Corollary 2.3. Let x = x(u), u € U, x € €*(U), define ci-regular surface S with
o1-isothermal parameters. Necessary and sufficient conditions that the coordinate
Sunctions x(uy,u), k € {1,2,3}, be o1-harmonic is that S is a minimal surface.

Proof. 1. Let the coordinate functions x;, k € {1,2,3}, be 6;-harmonic. Then, using
(2.16), we find H = 0, i.e., S is a minimal surface.
2. Let S be a minimal surface. Then H = 0 and using (2.16), we find
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A%x, =0, ke{l1,2,3}, on U,

i.e., the coordinate functions x;, k € {1,2,3}, are o;-harmonic. This completes
the proof.

We introduce the following notation. Suppose that S is a surface defined x = x(u),
ueU,xe€*U). Consider the complex valued function

§=wu+iup, ke{l,2,3}.

Then
3 3 ) ox, ° 2
2 _ Xk _ 9%k
L0 kZI(Aul =)
379 2 3 9w 9xp O 3/ 9x O 2
:Z(Xk) oy O 0% _Z(Xk )
= Auy k:1A”1 Auy = Auy
dx |? _dx dJx © dx °|?
= |— — L —_— |
Auy Auy Auy Auy
= Fi11 — Fioo — 2iF 2.
Next,

=

~—

)

S~—

S
Il

8xk 2 8xkcl 2
(ul) +<AM2 ) ) k€{1,2,3},
3 3 ax \ 2 Ix O\ 2
2 _ hal3 hals
) —%((A) (5 ))

3 a 2 3 O] 2
-y (?Ck) 'y (fm )
= Auy = Auyp

Definition 2.26. We will say that ¢ (&) is analytic in § if x;, k € {1,2,3}, are 0}-
harmonic in u; and u; in the whole U.

Theorem 2.6. The parameters u; and up are ©1-isothermal parameters if and only

if
(0c(8))* =0. 2.17)

Mw

k=1
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Proof. 1. Let u; and up be o1-isothermal parameters. Hence, by the definition for
o1-isothermal parameters, we get

Fin = Fi,

Fii =0.

Hence,

($($))* = Fiit — Fia —2iFinn

Mu

k=1

=0.

2. Let (2.17) holds. Then
Fi11 — Fi2 —2iF112 = 0.

Hence,
Fiijn=F and Fij;2=0.

This completes the proof.

Theorem 2.7. Let u; and uy be oy-isothermal parameters. Then S is a c)-regular
surface if and only if

3
Y 16(O)F #0. 2.18)
k=1

Proof. 1. Let S be a o)-regular surface. Then

3 Bxk 2 3 axk o 2

— | + — 0, (2.19)

l;l (Aul) kg’l <Au2 > 7&
or (2.18) holds.

2. Let (2.18) holds. Then (2.19) holds and the surface S is a 07-regular surface. This
completes the proof.

Theorem 2.8. Let x = x(u), u € U, x € €*(U), be a 6y-regular minimal surface
with uy and uy oy-isothermal parameters. Then the functions ¢(§), k € {1,2,3},
are analytic functions and they satisfy (2.17) and (2.18). Conversely, let ¢ ({), k €
{1,2,3}, be analytic functions which satisfy (2.17) and (2.18) in a simply-connected
domain U. Then there exists a oy-regular minimal surface x = x(u), u € U, x €
€*(U), such that

- axk ,8xk o1
‘Pk(C)*rul*lruz I ke{1,2,3}. (2.20)
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Proof. 1. Let x=x(u), u € U, x € %Z(U), be a o;-regular minimal surface with
u; and uy oy-isothermal parameters. Then, applying Theorem 2.6, it follows that
(2.17) holds. By Theorem 2.7, it follows that (2.18) holds.

2. Let ¢x(&), k € {1,2,3}, be analytic functions of { that satisfy (2.17) and (2.18).
Define

X :Re/q)k(C)AC, ke{1,2,3).

Then x;, k € {1,2,3}, are o1-harmonic functions and

¢(8) = L , ke{1,2,3}.

Since xi, k € {1,2,3}, are 6;-harmonic functions, we get
02 0 [ dx o\
L (x" ) —0, ke{1,2,3).

Au% TLQ Aug

By Corollary 2.3, it follows that x = x(u), u € U, is a 6} -regular minimal surface.
This completes the proof.

Theorem 2.9. Let S be a minimal surface. Then any oy-regular point (x1,x2) of S,
(x1,x2) € U C Ty x Ty, has a neighbourhood in which there exists a parameteriza-
tion (§1,&) € T(1y x T (p) of S so that

ax \? ( dx >2 dx Ox
— | = — and ——=0. 2.21
<A§1) Aé, A1 AG @2
Definition 2.27. Let (x;,x») and &;,&,) be as in Theorem 2.9. Then, we say that

&1, &, are in terms of op-isothermal parameters.

Proof. By Theorem 2.2, it follows that we can find a neighbourhood of the o-
regular point in which S may be represented in a nonparametric form. Then, the
equation (2.15) is satisfied in some disc

(x1 — a1)2 + (X2 — a2)2 < Rz.

By the equation (2.15), it follows that there is a o1-completely delta differentiable
function F such that

JoF B p°
Ax, WO
IF _ g
Ax) oW

Now, we take a o1-completely delta differentiable function G so that
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G JF %
Axp B Axp
dG%  OF
Ax,  Axp
Set

é] = X] +F(X],JC2),

& =0+ Gx,x).

2 Local Theory

(2.22)

(2.23)

Then, after we differentiate the first equation of (2.23) with respect to &; and &, we

get
_ 9% OF on
A& Axp A&
_ (14 02F ) 9n
B Axy ) A
_on  oF ox
AL Ax A

_ (14 0F )9
B Axy ) A

1= (14 28) 2x
B Axi ) A

0= <1+3F> o |

i.e., we get the system

Axl r&

OF % 0xy
Axy A&

IF % 9n
A)Q Algfl7
OF % 0xy
Axy AL

3F o1 8)62
AJC2 Agz’

OF % 0m,y
Axy A&

OF % 0z
Axy A&’

(2.24)

Now, we differentiate the second equation of (2.23) with respect to &; and &, and

we find
0= % 9Gdu G dx
a Ag] Ax1 Aé] AXQ A(ﬁ]
_ (149G 92, 9G dn
B Axy ) AE  Ax A§
and
8x2 8G 8)61 8G o1 8x2

=F+——F+— —+&
Aéz AX] Agz AXQ Agz
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2G>\ 9 dG d
0= (14297 2x2  0G dxa
Axy ) AL Ax AL
Thus, we get the system
o1\ 9 dG d
o= (14267 9%  0G on
Axy ) AL Axp AG
(2.25)
o1
1= (14207 92 9G o
Axy ) A& Ax AL

By the first equations of (2.24) and (2.25), we obtain the system

8F 8x1 8F"‘ axZ
I=(1+— ) F+— 5
Axi ) AE Axy A&
aG 1\ 9 0G 0
0= (1452 )2 22
Axy A& Axp A
whereupon
O
8x1 o 1+37§’; 1
AE JF | dGOl | 9F 9GOl _ 9F O1 9G
SRR S AR Al e
G
9% _ Axy
JoF 9GOl | 9F 9GOl _ 9F C1 9G *
AS AR+ AR A AR A A
By the second equations of (2.24) and (2.25), we get
oF \ 0 JdF °1 9
0= (1+7)F & 22
Ax; ) A& Ax, AG
8GGI 8x2 8G 8x1
l=(14— ———
Axy ) AE T Ax A
from where
JF O1
o _ Ay
dF | 9GOl | 9F 9GOl  9F Ol 9G
A E T AT A A
x; 1Jrj7F1
AE OF | 9GOl | 9F 9GO _ 9F Ol 9G *
A I+ gh+Re T RGAe —Au e

By (2.22), we find
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w1
A& (14_%;)2_’_(%01)2
dxp 27526‘

hdac : i
A& (H_%) +(%61)

and
@:_ %01
A (1+%)2+(%al)2
EPSNES
A& (14_297;)2_’_(%01)2‘
Then

A& ) T \ag

(20) (22 () (&)

(12", (22y__(rB) ()

A&) 4

1
= 2 2’
oF JF ©1
9xi 9% | 0% %2 _ I
A& AE T AE AL ; e
1 2 ((1+2£) +(A3520'1)>
x| — ]+8i ai01+alc] 1+a—F
Ax1 sz sz Ax1

=0

)

i.e., & and &, are in terms of o-isothermal parameters. This completes the proof.
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Theorem 2.10. Let a surface S be defined by x = x(u), u € U, where u; and uy
are oy-isothermal parameters. Let also, Sbea reparameterization of S defined by
a oy-diffeomrphism u = u(ut), u € T (1) x T (y). Then uy and u are cy-isothermal
parameters if and only if the map u(ii) is either conformal or anticonformal.

Proof. Since u; and u, are o}-isothermal parameters, we have
Fij=A%8;, i,je{1,2}.
By the equation (2.3)(see Section 2.1), we have
G=P'GP,

whereupon B
G=A*P"P.

Thus, u and u; are o}-isothermal if and only if
f‘lijzizaij, l7]€{1a2}7

A
or if and only if =P is an orthogonal matrix, or if and only if u(«) is conformal or

anticonformal. This completes the proof.

2.5 The o;-Bernstein Theorem

In this section, we will prove some results related to so-called ¢;-Bernstein theorem.
We will start with the following useful results.

Theorem 2.11. Let f € €' (U) and f be a real-valued function. Then, necessary
and sufficient condition that the surface

SZX3=f(X1,Xz), ()C],)Cz)EU,

to be on a plane is that there exists a o1-nonsingular linear transformation (uy,uy) —
(x1,x2), (u1,u2) € T (1) x T(2), such that uy and uy are oy-isothermal parameters on
S.

Proof. 1. Let such parameters u#; and u, exist. Let also,

C = uy+iuy,
axk 8)6](61
= ——i— k 1,2,3]
o0) = gr -G ke {1250

Since x| and x, are linear with respect to u; and uy, then we get that ¢; and ¢,
are linear functions of u; and u,. Because u; and u; are in terms of o1-isothermal
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parameters, we have that

Fiii = Fi,

Fii2 =0,

whereupon

($())? = Fitt — Fiaa —2iFinn

Mu

k=1

=0.

From here, we conclude that ¢3 is also linear. Thus, ¢3 has a constant gradient
with respect to u; and u; and hence, also a constant ¢;-gradient with respect to
x1 and xp. Therefore

fx1,x) =Ax; +Bx;+C, (x1,x)€U. (2.26)

2. Let f has the form (2.26). Set

2 _ 1
C14+A2+B?
and
x1 = AAuq + Buy,
Xy = /'LBul —Auz, (X],XQ) eU,
and
g(x17x2) = (x17x27f(xlax2))? (x1,x2) ev.
Then
(9X1
XA
Au1 ’
8x1
—— =B,
Auy
(9)62
—— = AB
Au1 ’
9x
Auz

and
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o _oron %o
Auy o Axy Aup  Axy  Aw

= AA% +AB?
= A(A%+B?),

of _ 0f x| 0f % ox
Au2 o Ax1 Au2 sz Au2

= AB—AB
=0.
Then
98 _ (9x dx Of
Au1 B Au17Au1’Au1
= (AA,AB,A(A%> +B?)),
98 % _ (0x % Im® If “
Auz o Au2 7Auz 7Al,tz
= (B,—A,0).
Hence,
dg dg
Fii= -2
i AulAul

= A} (A*+ B + A% (A* + B)?
= A% (A’ + B*)(1+A%+B%)

1

— A2+ B,

49
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and

= (AA)B+AB(—A)

=0.

Therefore u; and u, are in terms of Gj-isothermal parameters on S. This com-
pletes the proof.

Theorem 2.12. Let f be a solution to the minimal surface equation (2.10) in the
whole x1, xa-plane. Suppose that the transformation (2.23) is a o1-diffeomorphism
of the x1,x2-plane onto the entire £1,&;-plane. Let also, the functions

axl . axk o1

¢k(§) = r&_lr& , ke {172’3}’

be such that ¢ # 0, ¢ # 0 and % be a complex constant. Then, there exists a
1

nonsingular linear transformation

X1 = U
(2.27)

X = auy + buy,

such that uy, uy are global c1-isothermal parameters for the surface S defined by
X3 = f(X] ,xz).

Proof. By Theorem 2.9, it follows that &;, &, are in terms of 0-isothermal param-
eters on the surface S defined by

x3 = f3(x1,X2).

Since @ is a constant, there are a,b € R such that
1

¢ = (a—ib)§
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(9)62_,-3)62‘”> ~ (a—ib) (8)61_,-3)61"‘>
A AL ) A& AG
R L TR

S AéG AL A& AL

ox1 ax1 & < dx; & ox1 >
=a——-b— —ila— b— |,
A AG A& A&

or

whereupon
8x2 axl 8x1 o1

A&~ YaE A

(Q)Q o (9)(1 o1 8x1

25 ‘a5 TUag

Now, we consider the transformation (2.27). Then

(2.28)

dx;  dx; du
A& Au AG
_ duy
= r&’

8)61 o 8x1 8u1
A& Au AG
- 8141
= r&z’

0% _ 9x Juy | 0x % Oy
Aél Aul Aél AMQ Aél
8141 8u2

L Sl
A& Ag

(9)62 8x2 8u1 8x1 o1 8u2

AL Au AL T Awy AL
8141 auz

Hence and (2.29), we find
81,{1 8u2 8u1 8141 a

“A& TUag a8 'A%
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du; & duy & Juy 6‘+ duy
a—-;— —_— = ad—— =
A& A& AG A&
whereupon
dwm __om®
A& AL
(2.29)
dw " _ om
AL AE
From here,
ou _ (3141 3@)
AE \AE T AE )
O _ (Wl"‘ 3@"')
AL \AG TAG
and
T
HUTAE A
() )
A A&
duy “1)2 (81420])2
Fip=(-% ) +(°%
"z (Aéz A&
()
A& A&
= Fin
and
Ou Ju® _ duy duy® | duy du
AL AE AE AL AL A
_ _9mduw  du ouy
OAEAE T AE AL
=0.

Thus, u; and u; are global ¢;-isothermal parameters on S. This completes the proof.

Definition 2.28. The system (2.29) is said to be 07-Cauchy-Riemann system.
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Corollary 2.4 (The o;-Bernstein Theorem). Suppose that all conditions of Theo-
rem 2.12 hold. Then the only solution of the minimal surface equation (2.10) in the
whole x1,x2-plane is the trivial solution, i.e., f is a linear function.

Proof. By Theorem 2.12, it follows that there exists a nonsingular linear transfor-
mation (2.27) such that #; and u; are o;-isothermal parameters. Hence and Theorem
2.11, we conclude that the surface lie on a plane. This completes the proof.
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Chapter 3
Global Theory

Suppose that T, T, Ty, T3, ’]T(j), Jj€{l,...,n}, are time scales with forward jump
operators and delta differentiation operators &, o1, 02, 03, O(j) je{l,...,n}, and
A A1 Ay, A3 Ay, J € {1,...,n}, respectively. Let I C T, U,U;,W; C Ty x Ty, U,
%) CT(I) X...XT(n) andV C T x T, x T3.

3.1 Parametric Surfaces

In the previous chapter, we were able to obtain global results because some special
circumstances we had a global parametrization in terms of two of the coordinates.
In the general case, we have a surface covered by neighborhoods in each of which a
parametrization is given.

In order to study the whole surface we have to first give some important defini-
tions.

Definition 3.1. A &)-n-dimensional manifold is a Hausdorff space each point of
which has a neighborhood 6;-homeomorphic to a domain in T(j) X ... X T(y).

Definition 3.2. A oj-atlas A for a o1-n-dimensional manifold M is a collection of
triples (R, Oq, Fo ), where Ry is a domain in Ty x ... x T(,), Oq is an open set on
M and Fy, is a 61-homomorphism of R, onto O, and the union of all the O, equals
M. Each triple is called a 67-map.

Definition 3.3. A ;-n-manifold is said to be orientable if it possesses a o;-atlas for
which each transformation F, ! o Fg preserves orientation wherever it is defined. An
orientation of M is the choice of such a oj-atlas.

Definition 3.4. A ¢ -structure on M is a oj-atlas for which F Lo Fg e &' .

Definition 3.5. A conformal structure on a o1-n-manifold M is a o;-atlas for which
Fylo Fj is a conformal map wherever it is defined.

55
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Definition 3.6. Let M be a )-n-manifold with So’i "_structure A, and M be a ¢y-m-
manifold with a ¢ -structure A. A map f: M — M is said to be a ¢"’-map, denoted
by f € €7, for p <r,if each map Fgo foFy € €7, wherever it is defined.

Note that, in particular () x T, has a canonical ¢ -structure for all r, defined by
letting A consist of the single triple

and Fy, the identity map.

Definition 3.7. A ¢”-surface S in T(;) X ... X T, is a 61-2-manifold M with a ¢”
structure, together with a ¢”-map x(p) of M into T(j) x ... x T,).

Suppose that S is a ¢ -surface in T(;) x T(;) x T(3), A the ¢”-structure on the as-
sociated o7-2-manifold M, Ry a domain in the u-plane, and Rﬁ a domain in the
u-plane. Then the composition Fo 0 x(p) is a map x(u) : Rg — T (1) x T(3) x T(3
which defines a local surface in the sense of Section 2.1. The corresponding map
x(u) : Rg — T (1) x T3y x T(3) defines a local surface obtained from x(u) by the
change of parameters u(ut) = F, o Fg. Thus, all local properties of surfaces which
are independent of parameters are well defined on a global surface S given by the
above definition. By a point of S we will mean the pair (po,x(po)), where po € M,
and we may speak of S being o;-regular of a point, or of the tangent plane and the
main curvature vector of S at a point, and so on. The global properties of S will be
defined to be those of M. Thus, S will be called orientable if M is orientable, and an
orientation of § is an orientation of M. Similarly, for § compact, connected, simply
connected and so on.

Definition 3.8. A o;-regular ¢”-surface S in T(1y x... x T, is a minimal surface
if its mean curvature vector vanishes at each point.

Theorem 3.1. Let S be a oy-regular minimal surface in T (1) x T (3) x T3 defined
by a map x(p) : M — T(1) x T(3) X T(3). Then S induces a conformal structure on
M.

Proof. Without loss of generality, suppose that S is orientable. Let A be an orientable
atlas of M. Let also, A be the collection of all triples (Ra, Oa,Fa) such that Ra is a
plane domaln Oa is an open set in M, Fa is a oj-homomorphism of Ra onto Oa,
Fy B Yo Fy preserves orientation wherever defined, and

Xoﬁa Iﬁa — T(l) X T(Q} X T(3)

a local surface in oy-isothermal parameters. By Theorem 2.9, it follows that the
umon of the Oq equals M, so that A is a oy-atlas for M. Hence, we get that each
F OFB is conformal wherever is defined, so that A defines a conformal structure
on M. This completes the proof.

Definition 3.9. We say that a o-harmonic function on a ¢j-n-manifold M has the
min-max property if it achieves its maximum and minimum on the boundary of M.



UNDER PEER REVI EW

3.1 Parametric Surfaces 57

If a o1-harmonic function with the min-max property on a ¢1-n-manifold attains its
maximum or minimum at an entire point of M, then it is a constant on M.

Definition 3.10. A generalized minimal surface S in T() X ... x T, is a non-
constant map x(p) : M — Ty x ... x T, where M is a 61-2-manifold with a con-
formal structure defined by a o-atlas A = {(Rq, Oq, Fe) } such that each coordinate
function x¢(p), k € {1,...,n}, is a 6y-harmonic function on M and

¥ (6:0)7 =0,
k=1
where
h(8) = xi(Fa(L)),

o om
AE AG

=& +ib.

¢ ()

Definition 3.11. If the coordinate functions of a generalized minimal surface have
the min-max property, we say that the generalized minimal surface has the min-max

property.

Let n = 3. Then, if S is a o7-regular minimal surface, using the conformal structure
constructed in Theorem 3.1, we conclude that S is a generalized minimal surface.
Thus, the theory of generalized minimal surfaces includes that of o7-regular mini-
mal surfaces. On the other hand, if S is a generalized minimal surface, using that the
map x(p) is non-constant, we conlcude that at least one of the coordinate functions
x¢(p) is non-constant. This implies that the corresponding functions ¢ (&) can have
at most isolated zeros. Therefore the equation

3
kZ [(6(£))? =0 3.1)
=1

can hold at most at isolated points. Again applying Theorem 2.8, if we delete these
isolated points from S, the reminder of the surface S is a o7-regular minimal surface.

Definition 3.12. Let n = 3. The points where the equation (3.1) holds are called
branch points of the surface.

Theorem 3.2. Let n = 3. A generalized minimal surface that has the min-max prop-
erty can not be compact.

Proof. Let S be a generalized minimal surface whose coordinate functions have the
min-max property. Let also, S be defined by the map x(p) : M — T(1y X Ty x T(3).
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Then each coordinate function x;(p), k € {1,2,3}, is oj-harmonic on M with the
min-max property. If we assume that M is compact, then x;(p), k € {1,2,3}, would
attain its maximum and minimum at entire points of M. Hence, xx(p), k € {1,2,3},
would be a constant. Il is a contradiction. This completes the proof.

Definition 3.13. Let M be a o;-n-manifold with ¢ -structure defined by a o;-atlas
S ={(Ra,0q,Fy)}. A Riemannian structure on M or ¢?-Riemannian metric is a
collection of matrices G, where the elements of G, are € ?-functions on Oy, 0 <
g < r—1, and at each point the matrix G, is positive definite, while for any a,
such that

u(l) = Fy ! oFp

is defined, the relation
GpU" =GoU 3.2)

must hold, where U is the Jacobian matrix of the transformation F, o Fﬁ.

Definition 3.14. A differentiable curve on a 61-n-manifold M is a differentiable map
p(t) of an interval [a,b] of T into M.

Now, we suppose that a Riemannian structure on M is given by the collection of
matrices G = (gij) and p(¢) is a differentiable map on [a,b] C T. For each #y €
[a,b], we choose an Oy, and we set

i,j=1

W) = ( Y i (p(0))u (i <r>>

for ¢ sufficiently close to #y, u; and uy are coordinates in R. Note that by the equa-
tion (3.2), it follows that A(¢) is independent of the choice of Oy.

Definition 3.15. The length of the curve p(t), t € [a,b], is defined to be the number

/h(t)At.

a

Definition 3.16. Suppose that 0 € T and supT = oo. A divergent path on M is a
continuous map p(t), t > 0, of the nonnegative elements of T into M such that
for every compact subset Q of M there exists #p such that p(¢t) € O forr > fy. If a
divergent path is differentiable, we define its length to be the number

/ h(1)Ar. (3.3)

0


ARIYA TECH
Highlight
which is impossible.This


UNDER PEER REVI EW

3.2 Minimal Surfaces with Boundary 59

Definition 3.17. Suppose that 0 € T and supT = oo. A ¢;-n-manifold M is said to
be complete with respect to a given Riemannian metric if the integral (3.3) diverges
for any differentiable divergent path on M.

Let now, a " -surface S in T 1) x T 5) x T (3) be defined by a map x(p) : M — Ty x
T(3) x T(3), which is o1-completely delta differentiable. Then this map induces a
Riemannian structure on M, where for each o we set

x(u) = x(Fo (u))
and we define G to be the matrix whose elements are

ox Jx

= —. 3.4
Ax,- ij ( )

8ij
and the equation (3.2) is a consequence of the equation
G=r'Gp

given in Section 2.1, and the matrix G, will be positive definite at each point where
$ is oy-regular. Thus, to each oy-regular surface S in T(;) x T(,) X T3 corresponds
a Riemannian ¢1-2-manifold M.

Definition 3.18. Let n = 3. We say that S is complete if M with is complete with
respect to the Riemannian metric defined by (3.4).

3.2 Minimal Surfaces with Boundary

In this section, we will deduct a fundamental property of the minimal surfaces in
the case n = 3. Suppose that M is a 01-3-manifold.

Definition 3.19. A sequnce {p;};_, of points p; in M is said to be divergent if it
has no points of accumulation on M.

Definition 3.20. If S is a minimal surface defined by a map x(p) : M — T(;) x T ) x
T 3), the boundary values of S are the set of points of the form

lim x(px)
k—reo
for all divergent sequences {py};_, on M.

Remark 3.1. If M is a bounded domain in the plane, then a sequence {py};_; in M
is divergent if and only if it tends to the boundary of M.

Remark 3.2. If x(p) extends to a continuous map of the closure M, then the boundary
values of S are the image of the boundary of M.
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Definition 3.21. A 6,-3-manifold M is said to have the min-max property if any
surface on M has the min-max property.

Theorem 3.3. Let M has the min-max property. Then any minimal surface lies in
the convex hull of its boundary values.

Proof. Let S be a minimal surface on M. Since M has the min-max property, we
have that S has the min-max property. Suppose that S is defined by the map x(p) :
M — T(;) X T2y X T (3). In addition, assume that the boundary values of S lie in a
half space

3
L(x) = Z arx —b <0.
k=1

Coinsider the function

3
h(p) =Y awxi(p) —b.
k=1

Since x¢(p), k € {1,2,3}, are o1-harmonic, we get that 4(p) is o;-harmonic on M.
Let
suph(p) =m.

Then, we choose a sequence {py }1 such that
lim x(py) = m.
k—ro0

If {pr}r_; has a point of accumulation, then /(p) would assume its maximum at
this point and hence, it has to be a constant. If we choose an arbitrary divergent
sequence {q }r_;, we will have

h(qk) =m, ke Na

and then
lim (gx) < 0
k—yo0

and from here, m < 0. On the other hand, if {p;};_, is divergent, then we have the
following

m = lim h(py)
k—yoo
<0.

Thus,
L(x(p)) <0 on M

and S lies in the half-space L(x) < 0. The convex hull of the boundary values is the
intersection of all the half-spaces which contain them, and S lies in this intersection.
This completes the proof.
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3.3 Parametric Surfaces in T ) X T(,) X T(3). The Gauss Map

Here, in this section, we will discuss several results for the case n = 3. Without loss
of generality, supoose that 0,1 € T;,T(;), j € {1,2,3}, contain negative elements
and elements in the interval (—1,1). Let M be a ¢}-2-manifold.

Definition 3.22. The sets
C:Tj+lTla ]716{172737(1)7(2)7(3)}7

will be called time scale complex plane, shortly complex plane. The extended time
scale complex plane or shortly the extended complex plane is the complex plain plus
a point at infinity.

The Riemann sphere can be visualised as the unit sphere
x%—i—x%—&—x% =1 in Ty xTyxT;

with confomal structure defined by a pair of maps

2uy 2uy  w]P—1 4
= w=u +iu
WP U ) R
up € Ty, up € Ty, and

2u; 2, W) —1
F2 = ~ y T~ s T~
W2+ 17 w2 +17 w2+ 1

), W = U+ ilip,

u) € T(]), up € T(z).

Definition 3.23. The map F] is called stereographic projection from the point (0,0, 1),
the image being the whole sphere minus this point.

Let
Fi = (x1,x2,x3).
We will find Sl We have
2u1
ey
w21
2u2
o
w2+ 1 2
w2 =1
= x3.
w2 +1 3
Then
up ﬂ

uz X2


ARIYA TECH
Highlight
deleted empty space


UNDER PEER REVI EW

62
or .
1
Uy = —up,
X2
and
w = uj +iu
= —up+iuy
X2
X1, .
= | —+1)u,
X2
and
2
2 (% 2
w|™ = (2+1>’42
X
_ X+
= 5215
X2
-3,
X3 "2
2
Hence,
w* -1
X3 =
W +1
17)%1/!2—1
_ 3 2
T l—x
3,2
P u; +1
_(1-x)u—x3
(1 =x3)u3 +23
and
2\, 2 2 22 2
x3(1—x3)uz +x3x; = (1 —x3)u3 — x3,
or
2\, 2 2
(3 = 1)(1 =x3)uy = —xz(1+x3),
or
(1—x3)%u3 = x3.
Take

uy; =

X2

1—)63.

3 Global Theory
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Then
X1
up = —up
X2
X1 X2
- g 1—X3
X1
- 1—x3

and the map F ! is given by

Fol _x1tix
I—X3
and F~' o B is
1
w= =,
w

a conformal map of 0 < |Ww| < oo onto 0 < |w| < oo,

Definition 3.24. A meromorphic function on M is a complex analytic map of M into
the Riemann sphere.

Theorem 3.4. Let U be a domain in the complex {-plane, g(§) be an arbitrary
merophormic function in U and f(§) be an analytic function in U having the prop-
erty that at each point where g({) has a pole of order m, f (&) has a zero of order
at least 2m. Then the functions

1
o= 5f(1-g"),
62 = 370+, 33
03 = fg
satisfy
Or+95+07=1. (3.6)

Conversely, every triple of analytic functions in U satisfying (3.6) may be repre-
sented in the form (3.5), except for

o1 = i,

¢ =0.

Proof. 1. Consider the functions given by (3.5). Then
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i

2 2
Of + 03 + 63 = (;ﬂl—gz)) +(2f(1+g2)) +17¢*

| 1
= —fA(1-2¢g"+g* - Zfz(l +2¢°+g") + 18"

4
f12 122 124 12 122 124 2 2
—4f 2fg+4fg 4f 2fg 4fg+fg
__lfzz_lzz 2 2

=—5/8 2fg+fg

= 22 4 2

=0.

2. Conversely, for a given solution of (3.6), we set
f=¢1—if,

¢3
o — iy

Note that the equation (3.6) can be written in the form

(61— i¢2) (1 +i¢) = —93.

(3.7)

g:

Then
. 3
o1 +i¢y = o=t
. 3

= —(d —l¢2)m

= /¢
Hence and (3.7), we obtain

¢ = g(¢1 — i)

and

Or—ipp = f
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. 2
¢1+id2 = —fg"
whereupon
2
201 =f(1-¢%),
or

1
¢1 = Ef(l _g2)>
and
2igy = —f(1+8%),

or
S
02 = =2 f(1+g")

_ i )
4—2ﬂ1+g)-

This completes the proof.

Theorem 3.5. Any simpli-connected minimal surface in Ty X Ty x T(3) in the
Jorm x(8) : U — Ty x Tay x T3y, xx = xp1 — ix,fz', where U is either the disk or
the plane and the coordinates x; being o1-harmonic, can be represented in the form

¢
0(§)=Re | [0)az | +a, ke {123}, (3.8)
0

where @, k € {1,2,3}, are defined by (3.5), the functions f and g having the prop-
erties stated in Theorem 3.4, and the integral being taken along an arbitrary path
from the origin to the point . The surface will be ©y-regular if and only if f satisfies
the further property that it vanishes only at the poles of g, and the order of its zero
at such a point is exactly twice the order of the pole of g.

Proof. We set

g = P 0n "
CTAE AL

=& +i&.

Then (3.8) holds. We have

dx ax; O\’ dx: ox, O\ ? dx dxy 2
2 42 40 L_ ;%4 22 =i
P04 05= (A& "AE ) * (Aél ) ) * (Aél ‘a8 )
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_ (MY_Z,-@W%I‘“ _ <%“l>2+ (3&>2_Z,~3xzaxz"l _ <3xz>2

- \Ag AL AG A& Ag Ag AE A&
(%)Z_Ziaxsaxs‘“ _ (9)@)2

A AL AG A&
_ <3M>2+(9xz>2+<9xa)2 _2i<3maﬂ‘”+3xz9w"'+9mam“‘)
—\\4é A& A& A& AS AG AL AL AG

(&)@ (D)

:07

_|_

i.e., the equation (3.6) holds. Now, applying Theorem 3.4, we get the representation
(3.5). The surface will fail to be oj-regular if and only if f = 0 where g is regular
or fg* = 0 where g has a pole. This completes the proof.

Now, suppose that x and ¢ are as in Theorem 3.5. Then the tangent plane of the
surface is generated by the vectors

Or e
A& A&
where 5 9c O
x . dx !
r&_lfég = (61,02, 93).
We have that
Flij:)LzSija laje {17273}a
where
A2 = ﬂ ’
A&
ox O
— rﬁg
1S,
=3 Y (%l
k=1

= 24012 +19:P +195P)

1 1 2 2|2 ! 2 212 2112
— (=12 - ~If2N
5 (GUrF =@+ JUrPI+ 2P+ 1Pl
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| =

(U= =)+ P+ 042+ 1Pl

| =

1 _ 1 _
(U= = 61+ LR+ 84+ 1)+l
IR TR ST S B ST S ST
— 5 (U= J1PE = J1rPe + 1rPle
U UG+ PR Pl 4+ 2Ll
4 4 4 4
N S RPN NPTV ERE I
= 5 (3P 3Pl 1Pl
1
= 2P (1 +lg* +20g)
1
= POl

_ <f|(1;|gl2)>2,

ie., 2
a2 (M0 Elel)
) .
Furthermore,
9x (Re¢;,Redn, Reds)
AE 1, &2, BEP3 )
o1
A&gz = (Im¢la1m¢2,1m¢3)
amd
o1
Aagl X Aagz = (Re¢2lm¢3 —Rep3Im¢,, Im@Reds — Reg Imgs,

Re¢1 Im¢2 — Im¢1 Re¢2> .
Observe that

03 = (Regs + ilm@ ) (Regs — iIm¢3)

67
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= RepReds; — iRegrIm@s + ilm@Re s + Im@rImes

= RepReds + Im@,Im¢; — i(Im@,Red; — RerImés)

and
¢3$1 = (Re¢3 + iIm¢3)(Re¢1 — iIm¢1)
= Re¢;Re¢; — iRed3Im¢; + ilm@PRed; + Im@; Imas
= Re¢Re@s +Im¢;Im¢s + i(Im@sRed; — RedsIm¢ ),
and
010, = (Re¢; +ilm¢; ) (Red, — ilm¢,)
= Re¢Re¢ — iRe@Im¢, + iIm¢;Re¢y + Im¢ Im¢,
= Re¢;Re¢ + Im¢ Im@, + i(Im¢; Redr — Red; Im¢).
Thus,

ox dx &

g > A5 =Im(¢205, 9301, 919,).

By (3.5), we find

020, = é(Re f+ilmf)(1+ (Reg +ilmg)?)

(Ref + ilmf)(Reg + ilmg)
_ %(Ref—i—ilmq))(Ref—iImf)

(Reg — ilmg + (Reg + ilmg) (Reg + ilmg) (Reg — ilmg))
= 21/ (Reg — tmg + (Reg + ilmg) ¢

= Z1P(Reg(1+]g?) —img(1— [g*))

and
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Im(¢r0-) = ﬁR 1 2
m(¢293) = ~5-Reg(1 +g]").

Next,

038, = (Ref +Imf)(Reg + ilmg)  (Ref + ilmJ)

(1— (Reg + ilmg) (Reg + ilmg))
_ %(Refmmf)(Ref_ﬂmf)

(Reg +ilmg)(1 — (Reg —ilmg)(Reg —ilmg))
- %| f?(Reg + ilmg — (Reg + ilmg) (Reg — ilmg) (Reg — ilmg))
_ %|f|2(Reg +ilmg —[g[* (Reg — ilmg))

1
= Elflz(Reg(l —|g*) +ilmg(1+[g]?)),

whereupon
— 1
Im(¢39,) = Elf\zlmg(l +1g*).

Moreover,

¢10, = %(Ref—&-ilmf)(l — (Reg +ilmg)?)

i 2
(—2) (Ref +ilmf)(1+ (Reg+ilmg)")
i 2 . 2 . 2
- _Z|f| (1 + (Reg —ilmg)~ — (Reg + ilmg)
—(Reg + ilmg)*(Reg — ilmg)z)
- i P (1 + (Reg)” — 2iRegImg — (Img)* — (Reg)” — 2iReglmg

+(Img)* — Ig4)

i .
= = [fP(1—[g[* — 4iRegImg)

69
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= —ZIFP((1 =181+ |g]) — 4iReglmg).
ie., )
Im(916,) = 1121l = )¢ +1).
Consequently
ox dx 2 2
EXE = ('J;lReg(1+|g ) 71 S-Img (14 [g),
2
(e - el +1)
|f|2 )
(1+g]*)(2Reg,2Img, |g|* — 1).
Hence,
dx _ ox ™ 2
i x| = L) faReg + amg) + (g - 17
2
= VT (11 1612)f4lgl + gl — 2l 1
\f|2 o
(1+1g1*)y/Igl* +2lgl2 + 1
2
= 1411+ 1eP)
2
= U141y
_ (10 +1eP)Y’
2
and
_ Ag T AG
N= Ox  9x O
A T AL
£

COfPO+HeP)? 4
a

3 Global Theory

(1+|g|*)(2Reg, 2Img, |g|* — 1)
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_ ([ 2Reg  2Img lgl>—1
I+ gl I+ [g? 1+ g )

ie.,

3.9)

[ 2Reg  2Img [g]*—1
NI+ g 1+ g2 )

Definition 3.25. For an arbitrary o-regular surface x(u) in T ;) x T3y x T 3y one
defines the Gauss map to be the map

Ox ,, 9x Ol
x(u) = N(u) = Auy

of the surface into the unitr sphere.

Theorem 3.6. Let x(C) : U — T ;) x T(y) x T(3) defines a 61-regular minimal sur-
face. Then the Gauss map defines a complex analytic map of U into the unit sphere
considered as the Riemann sphere.

Proof. Note that the formula (3.9) cpompared with the stereographic projection Fj
shows that the Gauss map x({) — N (&) followed by the stereographic projection F
from the point (0,0, 1) yields the meromorphic function g(&). This completes the
proof.

Theorem 3.7. Let x(§) : U — T(;) x T(y) x T(3) define a generalized minimal sur-
face S, where U is the entire {-plane. Then either x(§) lies on a plane, or else the
normals to S take on all directions with at most two exceptions.

Proof. The surface S we associate with the function g(&) which fails to be defined
only if

01 = iy,

¢; = 0.

In this case, we have that x3 is a constant and the surface lies in a plane. Otherwise,
applying Theorem 3.6, we have that g({) is meromorphic in the entire {-plane, and
by the Picard theorem it either takes on all values with at most two exceptions, or
else it is a constant. By (3.9) the same alternative applies to the normal N and in the
latter case S lies on a plane. This completes the proof.

Theorem 3.8. Let f(z) be an analytic function in the unit disk U which has at most
a finite number of zeros. Then there exists a divergent path C in U such that

JILGIZERY
C
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Proof. Suppose that f(z) #0, z € U. Define

Thus, F(z) maps |z| < 1 onto a Riemann sphere which has no branch points. If we
set
2=G(w)

to be the branch of the inverse function satisfying G(0) = 0, then using that |G(w)| <
1, we conclude that there is a largest disk |w| < R < e in which G(w) is defined.
Hence, there exists a point wy so that |wg| = R and G(w) cannot be extended to a
neighbourhood of wy. Let L be the line segment

w=twy, 0<t<I,

and C be the image of L under G(w). Then C must be a divergent path. Otherwise,
there would be a sequence {t,},_; so that

limz, =1
n—soo
and the corresponding sequence {z,};._; would converge to a point zo € U. Then
F(z0) = wo

and

F*(z0) = f(z0)

£0

and the function G(w) would be extended to a neighborhood of wy. Therefore the
path C is divergent and

At

fircad - 0/1 0I5

=R
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Now, suppose that f has a finite number of zeros, say of order v; of the points z;.

Consider the function v
1—-Zkz\ *
() =f(z)H< k)

— 3k

never vanishes and by the above arguments, it follows that there exists a divergent
path C so that

[1A@1Az] <o
c

Note that
1 -7z Vi
o= ol (£%)
1—71z Vi
Z - ) 7l < 17
10 (s
whereupon
Vi
=2k
= ,  lzl < L. 3.10
[f@)]=1fiz |I;IZ_ZkZ 2| (3.10)
Note that
7—zx = Rez+Imz — Rez; — ilmg
= (Rez —rezx) + i(Imz — Imzy)
and

1 -7z = 1 — (Rez, — ilmz; ) (Rez + ilmz)
= 1 — (RezRez; + Imz;Imz — i(ImzzRez — ImzRezy )

= (1 —RezRez; — Imz;Imz) + i(Imz;Rez — ImzRezy).

Then
11 —zz]* — [z —uf

= (1 — RezRez; — ImzImz)? + (ImzxRez — ImzRez)?
—(Rez — Rez)? — (Imz — Imzy )2

= 1+ (Rez)?(Rez;)? + (Imz)?(Imzz )* — 2RezRezy — 2ImzImzy
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+2RezImzRez Imzy, + (Imzk)z(Rez)2 — 2RezRez;ImzImz;
+(Imz)?(Rezi)? — (Rez)? + 2RezRez; — (Rezg)? — (Imz)? + 2Imzlmz; — (Imgz;)?
= 14|z (Reze)” + [2]* (Tmz)* — |2 — |z [
= 1+ [zl |zl = [zl — |zl
= (1= |zP) + |zl (12 = 1)
= (1= %) (1=

>0, |7<1,
ie.,
lz—zk] <|1—7zz], |zl < 1.

Hence and (3.10), we get

mm:ﬁ@gﬁzm”

1 —Zz| %

<|f)], |z <1.

Therefore

[1r@liaz < [1ni@liad
C

C
< oo,
This completes the proof.

Definition 3.26. Let M be a 01-2-manifold. If there exists a simply-connected o -
2-manifold M and a map 7 : M — M with the property that each point of M has
a neighborhood V such that the restriction of 7 to each component of 77! (V) is a
o1-hpomomorphism onto V', we say that M has an universal covering surface.

Suppose that M is a 61-2-manifold that has an universal covering surface. Then the
map 7 is a local o1-homomorphism, and it follows that any structure of M: €',

conformal, Riemannian and etc., induces a corresponding structure on M. Now, we
suppose that S is a minimal surface defined by a map x(p) : M — T(j) x T(5) x T(3).

Then we have an associated simply-connected minimal surface S called the universal


ARIYA TECH
Highlight
deleted empty space


UNDER PEER REVI EW

3.3 Parametric Surfaces in T 1) X T(y) x T 3). The Gauss Map 75
covering surface of S, defined by the composed map
x(n(ﬁ)) M — T(]) X T(Z) X T(3>.

It follows that S is o -regular if and only if S is o} -regular, and Sis complete if and
only if S is complete. Thus, many questions concerning minimal surfaces may be
settled by considering only simply-connected minimal surfaces.

Theorem 3.9. Let S be a complete 6y-regular minimal surface in T 1) x To) X T3)

so that its universal covering surface S may be represented in the form x(§) : U —
T(1y X T2y X T(3), where U is the plane or the unit disk. Then either S is a plane or
else the normals to S are everywhere dense.

Proof. Suppose that the normals to S are not everywhere dense. Then there exists
an open set on the unit sphere which is not intersected by the image of S under the
Gauss map. By a rotation in space, we may assume that the point (0,0, 1) is in this
open set. Let the normal N be in the form

N = (N1,N2,N3).
Then there exists 1 < 1 such that
N3 <n.

The same is true for the universal covering surface S of S which may be represented
in the form x(&) : U — T 1) x T 2) x T 3), where U is the plane or the unit disk. Note
that U can not be the unit disk since, using (3.9), we have

N <n<l1

if and only if
8(E) <M < oo,

and S is o)-regular, we have that f (£) cannot vanish. The length of any path C
would be

[r1agi=3 [1710-+1gP1ag
C C

1 2
<22 [irlag
C

2

By Theorem 3.8, it follows that there exists a divergent path C for which this inte-
gral converges and then the surface would not be complete. Thus, U is the entire
plane, and since the normals omit more than two points, applying Theorem 3.7, we
conclude that § would be on a plane. The same is true of S, and since S is complete,
we conclude that S must be the whole plane. This completes the proof.
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Theorem 3.10. Let U be an arbitrary set of k points in the unit disk, where k < 4.
Then there exists a complete 6y-regular minimal surface in T 1) X T ) X T 3) whose
image under the Gauss map omits precisely the set U.

Proof. By a rotation, we may assume that the set U contains the point (0,0, 1). If
this is only point, then by setting

f(&) =1,
g(8)=2¢,
solves the problem. Otherwise, let the other points of U correspond to the points
wm, m € {1,...,k— 1}, under stereographic projection. Then, we set
1
f§) =
I1 (8 —wm)
m=1
8(8) =¢.

Then, we will use the representation (3.5), (3.8) in the whole {-plane minus the
points wy,, to obtain a minimal surface whose normals omit precisely the points of
U by (3.9). It will be complete because a divergent path must tend either to oo or to
one of the points wy, and in either case, we obtain

[21agi=3 [1s10+IgPyag]
C C

— o0,

In the case when the integrals (3.8) may not be single-valued, then by passing to the
universal covering surface we get a single-valued map defining a surface having the
same properties. This completes the proof.

3.4 The Gauss Curvature. The Total Curvature

In this section, we continue the study of minimal surfaces in T) X T 3) X T(3), using
the representation (3.5). Then, for the first fundamental form, we have the following

1+1g»))° .
Fllj:<|f|(2|g)> 3ij7 l,]E{laz}a
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2o ( dx >2
A
dx I
a (N?z )

Fiii (Cf;)z+F122 (df;)z = Fn ((dftl)z‘F (dAgtz>2>

_ (If(1;|g|2)>2 ac

At

and

Now, we will determine the second fundamental form. We have

~ % (Reg)
— e (U=
= %Re (jgl(l -¢) f"‘jé(ngg"‘))
= %Re (Aafl(l —gz)) sRe <f“‘ Aa; (g+g"1)>
and
S =g (5)
~ 7 (Reg)

— gRe(igp (70 +6)
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_ 1 of 2 o dg (ylﬁ
2Im<(1+g)+f (gAélJrg A§1>>
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8g Reg dg Img
Iy = —Re [ 19198 (54 ¢° )Im( 0 98 (o1 gor)) M8

o] |g|2_1

(f A& ) lgl?+1

= ! o1 dg o1 - Gl% ol
—WH(—Re(f r&(g+g ))Reg Im(f Agl(ngg ))Img

#re (525 ) s 1)

1
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:|g|2+1(—Re(f AE, )Re(g+g6‘)Reg+Im(f A, )Im(g+g JReg
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—Im (f"‘ Ag) Re(g+ g% )Img —Re (f ¢, ) Im(g + g% )Img
g ) oo e (1735 amer—re (17 35 ) )
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1 8g)
= ———( —Re[ f®"— | (Reg® Reg +Img° Im
(R (77 2 ) er”Reg me?ime

0
+Im ( for g) (Img® Reg — Reg® Img) > ,
Aé
1.€.,

1 dg
Il = ——— | —Re | o' —- ] (Reg® Reg + Img° Im
12 |g|2+1( (f A§1>( 8 8 g g)

+Im (f"l j%g) (Img° Reg — Reg® Img) > .
1

Consequently
O NIyt
a2 N 11+
1 Bg)
= ——— —Re| f®—= ) (Reg® Reg + Img® Img
e (Rl )
(o) ag O] (o)
+Im | f IE (Img®' Reg — Reg®' Img) |.
1
Next,

Py _ 3 (3n)
A& AL\ AL

— % (Repy)

——gRe( 4z U1-2)

——gRe (L 1-8) -1 5% (o)

= —%Re (jfz(l —g2)> +5Re (f"zji (g+g"2))
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+Im (fcz 98 )(ImgGZReg Reg"zlmg)>.
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0%x%

Tézz = Wfb(f’g)-

From here, for the second fundamental form we obtain the following representation

2 d&AE; 1 dé\? 1 dé; d&;
i7]Z::1bij(N)EE = |g‘2+1H1(f,g) (At) - \g|2+1H1(f’g)EE
1 A& d&, 1 d&\’
+\g|2ﬁH2(f7g)A7tA7t_ ‘g|2+1H2(f»g) (At)

déi d&

2
(e () - - e

IPEEN At

i (%))

Theorem 3.11. Suppose that

H, (fag) = _HZ(fag)

and

L(f,8) H(f,8)(1+i).

o
lgl?+1

Then, for the normal curvature we have the representation

4 .
k(N) = ——————Re (L(f,8)¢""),
(1£1(1+1g2))® ( )
where
4 _|4¢] o
At At
¢ =2E& +i&.
The principal curvatures are given by
4IL(f.8)|
() = L
S+ 1gP)?
(3.11)
) — - L0

(1£1(1+1gP)*
Proof. Note that
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whereupon

(
(
Re (L(f,g) <j§)2> = |g‘z%H(f,g) (
(
(

(5)-(5))- ot

1 d&\® | (dE&N\? dé d&
g (A,>+<A,)2A§A,>~

Therefore

2 d& d&; 1 dEN?  [(d&E N _dE dE
L b5 a7 = e Ue) Qm)*(mJ‘QAtm

i,j=1

and

2
d¢; d&;
L )5
k(N) = o 2 2
Fm(%) + Fin (%)

2 .
62105)

ﬂ2

At

¢
At

Re (L(f,g)

(\f\(l;\g\z))z

4 .
= Re(L(f,g)¢¥%).
T ige L)

The maximum and minimum of this expression, as o varies from 0 to 27, were

defined to be the principal curvatures. Then, we have (3.11). This completes the
proof.

Definition 3.27. The Gauss curvature K at a point is defined to be the product of the
principal curvatures.
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Corollary 3.1. Suppose that all conditions of Theorem 3.11 hold. Then

16lL(f.g)
R+ IgP)*

Consider, for an arbitrary minimal surface in T () X T 3) x T 3), the following se-
quence of mappings

K=

U Q S Gaug> map 5 stereograp@)projection w— plane, (3.12)

where X is the unit sphere. By Theorem 3.6, it follows that the composed map is
g(&): U — w—plane.

Consider an arbitrary differentiable curve {(¢) in U and its image under each of the
maps in (3.12). With s(¢) we will denote the arclength of the image on S. Then

dg

At

ds 1

— 2
& — I +1gP)

The arclength of the image in the w-plane is

dw

At

~ 1Lt |% |

Let y/(r) denote the arclength of the sphere. Then, by the definition for stereographic
projection, it follows that

dy 2 dw
At 1+ |w)2 | At
Hence,
d 2 @|
A 1+|w|? | At
=

A SA0+IeP) S

d
ﬁw(ﬁgﬂ ‘fg

LA +[g?) | %
_4L(fe)l
1+ [gP)?
= K|

Let now, U; be a domain whose closue is in U. The surface defined by the restriction
of x(&) to U; has total curvature given by
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/[{KAA:/U/KAZA&A&

// mwngLﬂu+@n
IF12(1+g|*)* 4

//4ﬁfﬂ 744

(Y s

which is the negative of the area of the image of U; under the Gauss map.

A&AL
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Chapter 4
The Variational Approach

Let Ty and T, be time scales with forward jump operators and delta differentiation
operators o1, 0> and A;, Ay, respectively. With %,; we denote the set of functions
f(x,y) on Tj x Ty with the following properties.

1. f is rd-continuous in x for fixed y.

2. fis rd-continuous in y for fixed x.

3. If (x0,y0) € T x T, with x( right-dense or maximal and yy right-dense or maxi-
mal, then f is continuous at (xg, o).

4. If xo and yg are both left-sided, then the limit f(x,y) exists(finite) as (x,y) ap-
proaches (xg,yo) along any path in

{(x,) €Ty xTr:x<x9, Y<yo}-

By %r(dl ) we denote the set of all continuous functions for which both the Aj-partial
derivative and the A,-partial derivative exist and are of the class C,4.

4.1 Statement of the Variational Problem

Let E C Ty x T, be asetof type w and let I be its positively oriented fence. Suppose
that a function

L(x,y,u,p,q), (x,y)€E\JI' and (u,p,q) €R’,

is given, it is continuous together with its partial delta derivatives of the first and
second order with respect to x, y and partial usual derivatives of the first and second
order with respect to u, p, g. Consider the functional

200 = [ [ Leu(01,0:0)).0 (x,02()). (01 (1) y) Aredoy - (41)

91
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whose domain of definition D(.Z’) consists of functions u € %r(dl ) (E UF ) satisfying
the ”boundary conditions”

u=g(x,y) on I, 4.2)

where g is a fixed function defined and continuous on I".

Definition 4.1. We call functions u € D(.Z) admissible.

Definition 4.2. The functions 1 € %r(dl )(E UF )and 7 =0 on I', are called admis-
sible variations.

If fe ‘fr(dl ) (E UF ), we define the norm

Ifll=sup [f(x,y)|+ sup
(xy)eEUT (x,y)EE

41 02()
+ sup |74 (01(x))].
(x.y)€E

Definition 4.3. A function i € D(.Z) is called a weak local minimum of .% pro-
vided there exists a > 0 such that

ZL(t) < 2L (u)

for all u € D(.Z) with
lu—al <é.

If
L(i) < L(u)

for all such u # i, then 4 is said to be proper weak local minimum.

4.2 First and Second Variation

For a fixed element u € D(.%) and a fixed admissible variation 1, we define & :
R — R as follows.
D(e) =L (u+en).

Definition 4.4. The first and second variation .Z at the point u are defined by
Zi(u,n) =P'(0) and L(u,n)=D"(0),

respectively.
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Theorem 4.1 (Necessary Condition). If i € D(.¥) is a local minimum of £, then
Z(u,n)=0 and £(u,n)>0
for all admissible variations 1.

Proof. Assume that .# has a local minimum at & € D(.%). Let 1 be an arbitrary
admissible variation. Then

@'0)=.A,n) and @"(0)=%a,n).

By Taylor’s formula, we get

®(e) = D(0) + ' (0)e + %cb”(a)sz,

where |o| € (0, |€]). If |¢] is sufficiently small, then
la+en —all = [e]|[n]l

will be as small as we please. Hence, from the definition of a local minimum, we
obtain
Z(a+en) > L),

ie.,

®(g) > O(0).

Therefore & has a local minimum for € = 0. From here,

or, equivalently,

Since @'(0) = 0, we have
1
&(g) — P(0) = Eczb”(oc)sz.

Therefore @” (o) > 0 for all € whose absolute values is sufficiently small. Letting
& — 0 and using that ot — o0, as € — 0, and ®” is continuous, we get

@"(0) >0,

or, equivalently,

This completes the proof.
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Theorem 4.2 (Sufficient Condition). Let &i € D(.¥) be such that
Zi(a,m)=0

Sor all admissible variations M. If £ (u,n) <0 for all u € D(¥) and all admissible
variations 1, then £ has an absolute minimum at the point Q. If £ (u,n) < 0 for
all u in some neighbourhood of the point ii and all admissible variations 1, then the
functional £ has a local maximum at .

Proof. For the function @ we have

1

D(1) = @(0) + P'(0) + 5,

d"(a), ac(0,1). 4.3)

Note that

Hence and (4.3), we obtain
1
ZL(a+n)=2La)+ 5L+ on,n)

for all admissible variations 1, where & € (0, 1). Suppose that % (u,n) > 0 for all
u € D(Z) and all admissible variations 1. If u € D(.¥), then putting

n=u-—u,

we get

Then .Z has an absolute minimum at the point ii. Now we suppose that % (u,1) <0
for all # in some neighbourhood of the point # and all admissible variations 1. There
exists r > 0 such that for u € D(.Z’) and
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lu—a <r,

we have % (u,n) < 0 for all admissible variations 1. We take such an element u

and we put 1 = u — i. Then

2(0) = 2(@) + 3 Lo+ o).

Note that
li+an —al| = [[an]|
= |eln]|
<l
= [lu—a
<r
Hence,
32(ﬁ+ anan) S 07
and, then

ZL(u) < ZL@).
This completes the proof.

By Theorem 4.1 and Theorem 4.2, it follows that

Awm=[ [ (Luoc,y,u(cn (3),02(3)).16% (3,02(0)).16(01 (), )1 (01 (). 02(1)

+Lp(x7y7”(o-1 (x)vo-z(y))vuAl (x, 0-2(y))7uA2(61 (X)J))WAI (xa GZ(y))

+Lq(x7y7u(61 ()C), GZ(y))a uAl (X, GZ(y))a qu(Gl (x)vy))nSQ (Gl (x),y) Alezy,

and
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L= [ [ (Luuoc,w(m (x), 32(5)), 4 (x, 62(»)), 442 (61 (x),)) (M (61 (x), 6>(»)) )

+LPP(x7y7u(Gl (x)7 O-Z(y))7 MA] (xa O-Z(y))7 qu(Gl (x>7y)) (UA] ()C, O-Z(y)))z

FLygl63.1(01 (), 3200)).% (3,650)), 6% (01 (1).) (1% (01 ().0))

+2Lup(x%,y,1(01(x),02(y)), 4™ (x,02(y)),u™ (01 (x), y))0 (01 (x), 02 () )0 (x, 02())

+2Lug (x,3,u(01(x), 62(3)),ut (x, 62(y)), u2 (01 (x),3))n (01 (x), 02()) N2 (01 (x),¥)

F2Lpg (%, 7,u(01(x), 02(y)), ™ (x, 02()), w2 (01 (x), 7)) (x, 02 ()N ™2 (01 (x),¥) | Arxday.
4.5)
Example 4.1. Let

L(xayau(cl (x)70-2(y))7uAl ()C, GZ(y))vqu (Gl (x)ay))

= xty (o1 (,0:00) + (1 (1. 20))

3

+ <L¢A2(Gl (x), y)) .

Here
L(x,y,u,p,q) =x+y+u+p* +q.

Then

Ly(x,y,u,p,q) = 1,
Ly(x,y,u,p,q) = 2p,

Ly(x,y,u,p,q) = 3¢°,
Luu(x,y,u,p,q) = 0,
Lpp(xay»”;PaQ) =2,

LIIq(xJ’,MaPaCI) = 6Qa
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Lyg(x,y,u,p,q) = 0,
Lup(xayvuapaq) = Oa

qu(xay?uapaCI) = O

Therefore the equations (4.4) and (4.5) take the form

Awm=[ [ (n(ol (3),02(3)) + 26 (v, 02 () (. 02(1))

+3 (uAl (Gl (x)vy))z nAz(Gl (X),y)) AleZya

2t = [ [ (2(n o))+ 601 099) (n%010)) ) Arvey

4.3 Euler’s Condition

Let E is an @-type subset of T x T» and I" be the positively oriented fence of E.
We set

E° ={(x,y) €E: (01(x),02(y)) € E}.

Lemma 4.1 (Dubois-Reymond’s Lemma). If M (x,y) is continuous on E UF with

[ [ Mymeiw. 02004y =0
for every admissible variation 1, then

M(x,y)=0 for all (x,y)€E°.

Proof. Assume the contrary. Without loss of generality, we suppose that (xg,yo) €
E° is such that M(xg,yo) > 0. The continuity of M(x,y) ensures that M(x,y) is
positive in a rectangle

Q = [xo,x1) x [yo,y1) CE

for some points x; € T, y; € T» such that
o1(x0) <x1 and ©2(yo) <1

We set
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(x—x0)*(x—01(x1))*(y—y0) y—2(n))*  for (xy)€Q
n(x,y) =
0 for (x,y)€E\Q.

We have that ] € %r(dl)(EUF), n ‘r: 0, i.e., 1 is an admissible variation. We have
that

[ [ msmieie,o:0DAmasy = [ [ mMxyn(oie),020))Arxaay
E Q

> 0,

which is a contradiction. This completes the proof.

Theorem 4.3 (Euler’s Necessary Condition). Suppose that an admissible function
il provides a local minimum for £ and the function @i has continuous partial delta
derivatives of the second order. Then i satisfies the Euler-Lagrange equation

0 = Ly(x,y,u(o1(x), O-Z(y))ﬂuAl (x, GQ(y))ﬂqu(Gl (x),))
—L5 (x,y,u(01(x),02(y)),u (x,02(y)), u™ (01 (x),y)) (4.6)

_ng (xay7 M(Gl (x)a 62(y))7uA1 ()C, 62(y))7uA2 (Gl (x)’y))

for (x,y) € E°.

Proof. Since i is a local minimum for ., by Theorem 4.1, it follows that
Zi(a,m) =0

for all admissible variations 1. Hence and (4.4), applying integration by parts and
Green’s formula, we get

0=%4(a,1n)
= //E (Lu(xvyau(cl(x)762(y))7MA1(X,Gz(y)),MA2(Gl(x)’y))
x1(01(x), 02(y))A1xAzy

+L17(x7y’”(61 (x)vc2(y))7uAl ()C, Gz(y))vqu(Gl (x)vy))

xn (x,0(y))



UNDER PEER REVI EW

4.3 Euler’s Condition 99

+Lq(x»yvu(01(x)aGz(y)),um(xaGz(y)),MAZ(Gl(X)J))WAZ(GI(X)»Y)) Ay
= [ ] 1106, 020)).0% (v, 02(0)).1 (01 (5).)
<11(01(x),02(»))Arxday
[ ( (.01 (0. 02()). " (x. 02(5)). 4% (01 (). )
x4 (x,0(y))
Loy (010, 02(0). % (x,02(0). (01 (1))
“n(01(x).3)Arxdry
= [ [ Lieu(01(9,0200). % (x.02(0)). % (01 (1))

xn(01(x),02(y))A1xAzy
], (A( (2.3:1(01 (), G2(3)). 4% (x. 03(3)), 4% (61 (). 3)
Xn(x,Gz(y)))

+A82y (Lq(x,% u(o1(x),02(y)), u™ (x,02(y)),u™ (01(x),y))

xn(o (x),y)) ) ArxAzy

-1/, (L;‘,l (5,3.0(01 (1), 02(3)) 1 (3, 02(1)) (01 () ))

+L32 (x’y>u(0-1 (x>7 GZ(y))7 ut (x7 Gg(y)), ”Az(al (x),y))>
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xn(01(x), 02(y))Ar1xdsy
= | [ Lenu(019,0200). 6% (x.02(0)). % (01 (2).5)

xn(01(x),02(y))A1xAzy

// <A1x <LA1 (5,3,(01(x), 02(1),u™ (¥, 02(»)),u (61 (x),))

+LY (x,y,u(01(x), 02(y)), u™ (x,0(y)), u™2 (0} (X)yy))>
xn(o1 (x)aﬁz(y))) )Alezy

+/(szl(xvyvu(cl(x)ao-Z(y))»uAl (x,02(3)),u*(01(x),y))
J

x1(x,02(y))Azy

7L32 (X,y,M(O'I ()C), (72()7)), MAI ()C, GZ(y))a MAZ(GI (x)vy))

xn(o (X),y)A1X>

-/ / W 3,14(01 (x), 02(1)),u (x, 02.(»)), 1 (01 (x), 7))

x1(01(x),02(y))ArxAzy
_//E (Lﬁl (x,y,u(o'l(x),cz(y)),uA‘(x762(y)),qu(Gl(x),y))

_Lﬁz <x7y>u(0_1 (x)7 (72()1)), MAI (x7 GZ(y))7 MAZ(GI (x)>y))>

x1n(0o1(x),y)A1xAzy.

From here and from Lemma 4.1, we get (4.6). This completes the proof.

Example 4.2. Let T| = ZNO, T, = 3MNo_ Consider the variational problem
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L(y) = //Ex2y3u(2x, 3y)u (x,3y)u? (2x, ) AjxAyy — min,

where
E={(x,y) €T xTr:1<x<8, 1<y<27}.
Here
L(x,y,u,p,q) = x*y’upq,
oi1(x) =2x, xeTy,
(72()7) = 3y7 yE TZ'
Then

Ly(x,y,u,p,q) = X'y’ pq,
Ly(x,y,u,p,q) = ¥y ug,
Ly(x,y,u,p,q) = X*yup,
Ly (x,y,u,p,q) = (01(x) +x)y’uq
= (2x+x)yuq
= 3xy’ug,
L5, y.,p.q) = 2 ((02)) +702(3) +37 ) up
=27 ((3y)> +y(3y) +*) up
= 2(9y” +3y* +y")up

= 13x%%up.
The Euler-Lagrange equation takes the form

2y u (x,3y)u (2x,y) — 3xy u(2x, 3y)u™ (2, y)

—13x%y%u(2x,3y)u® (x,3y) =0, (x,y) €E.
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4.4 The Area of Parameterized Surfaces

Definition 4.5. Suppose that S is a o7-regular surface given by f = f(¢),7 € U. The
op-area of S is given by

Ag, (S / / A% £32%" | At Aot

Suppose that S is a o;-regular surface defined by

f=rft,n)=(filt,n), L(t1,0),f(t,0)),  (t1,.0) €U.

Then
Ap A
ﬁl fll‘]’ 211043 )0
fA2(71 _ fﬂzﬁl Ayo1 A0y
- Ity J2t, /31
and
A Mo Ar01 _ A0 A0 A0
It < f2t1f3t2 2 3zl7f1t2 f3z1 fltlf%g )
f fAzo'l A0
11,/ 21y 1ty 2[1
Hence,

(i) = (o — i ) o (e = rin )
b (e g’
= () (o) g e i g (o) ()
(Y () () () 2 oo gl e

() (o) (o) () oo s i oo

= () () () () () ()
# () () + () () () ()
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() () (o) (mem) o+ () ()
() () = (m) ()= () ()

Ay 0y Ay 0y Ay 0y Ay 0y
72f2t1f2t f3t1f3t2 2fltlf1t f3t|f3t2

Ar O Ay O]
_2f]lz f]lllellez

= (0) e () ()" () (o) o (7))
(e g e g )

2
= Fii1Fi22 — Fiysp.

AGl (S)://mAlﬁAth.
U

Example 4.3. Let T\ =T, = Z, T(1) = T(2) = T3y = R and

Therefore

U= {(tl,tz) ET xTr: 01,6 < 3}.
Consider a surface S with a local parameterization

ft,n) =01 +2,0—-2,61+1), (t,h)€U.

Here,

filti,) =142,

htn) =06-2,

fitn) =t+n, (n,n)eU.
Then

A
fltll(tlatz) = 15

fi(tin) =0,
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fﬁ;cl(fl,tz) =1,
ful(t1,1) =0,
f(tn) =1,
%M nn) =1,
ngtll(fl,fz) =1,
fﬁ;(tl’t; =1,

A
f3[§o-l (tlatz) =L

Hence,
Fii1 = (flA[: (tl,tz))z + (sz[: (tl,tz))z + (f;: (t1,t2))2
=2,
Fip = fii (t,0) 127 (01,0) + £, (11,02) £3,2° (11, 12)
il (0,0) 27 (0,1)
=1,
Mo 2 Mo 2 Ao 2
Fip = (flé 1(fl,tz)) +(f2,§ 1(t17t2)) +(f3,§ 1(fl,l‘z))
=2
so that

=3

and
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A (S) = / | / V3Ait Moty
U

=93,

4.5 Minimal Surfaces

Let S be a o;-regular surface given by

f=f(t,n)=(t,n,f3(t,n), (t.0)eU.

Set
A
p= f31117

_ M0
q - f3[2

and

1

H(t1,0, f5,0,q) = <<1+<f§:)2) (1+(f3Aécl)2> 7( 3 3At§01>2>2

— (1+ )1+ PP

=

= (14 P+ + p*¢* — P¢P)

=1+p*+4¢* (4,n)€U.

By the study in the previous section, we have that

AG](S): //UH(tl7t27f3apaq)Alt1A2t2-

Then
p

VIt +q*
q

VI+tpPr+

Hfz ([1>t2af37p7Q) =0.

Hp([1>[27f37p7q) =

Hq(t17t27f3apaq) =

Hence, using the Potzsche chain rule, we find
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HpAl (t]7t27‘f‘37p7q)

1

P \/1+p2+q2p(f ‘ dh) (P (p+p™) +q" (g +47))

0 V1H+P2+++h (P21 (p+p%1 )+ (g+¢1))
VI+p g1+ 2 + g2

and

Hqu(tlatZaf%P»CI)

1
Az / l 2 2 g 1 dh A2 (o) A2 (o))
1 e ((j) VI @2+ (72 (p+%2)+4%2 (g+42)) (PP p?) a2 (a+4%))

\/1+p2+q2\/1+p20'2+q20'2

Thus, the Euler-Lagrange equation is as follows

1
Al 1 2 2 1 dh Aq O] Al o]
0—p e p(g" VP2 4@+ (51 (p+°1)+41 (g+4°1)) (P2 p+p*)+a™ (g +q%))
VI+p g1+ 2 + g2
1
A2 /1+ 2+ 2 _ ( 1 dh) Az + oy + A2 + (o)
+q prra—a ({ VI+P2 4@+ (P2 (p+92)+4%2 (g+42)) (P2 (p+p%) +42 (g +4%))

V142 +@? 1+ p2 + 2o
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Countour, 116
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