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Development of Scoring-Assisted Generative Exploration and Its Application to Inhibitor Design 

 

Abstract 

De novo molecular design is the process of searching chemical space for drug-like molecules with desired 

properties, and deep learning has been recognized as a promising solution. In this study, I developed 

aneffectivecomputational method called Scoring-Assisted Generative Exploration (SAGE) to enhance chemical 

diversity and property optimization through virtual synthesis simulation, the generation of bridged bicyclic rings, 

and multiple scoring models for drug-likeness. In six protein targets, SAGE generated molecules with high 

scores within reasonable numbers of steps by optimizing target specificity without a constraint and even with 

multiple constraints such as synthetic accessibility, solubility, and metabolic stability. Furthermore, I suggested a 

top-ranked molecule with SAGE as dual inhibitors of acetylcholinesterase and monoamine oxidase B through 

multiple desired property optimization. Therefore, SAGE can generate molecules with desired properties by 

optimizing multiple properties simultaneously, indicating the importance of de novo design strategies in the 

future of drug discovery and development. 

Keywords: drug discovery, de novo molecular design, fine-tuning, quantitative structure-activity relationship, 

dual inhibitor design 

1. Introduction. 

Discovering new molecules with the desired properties is a key aspect of drug discovery, but the task of 

finding these molecules is challenging because of the massive size of the chemical space. While virtual 

screening is an efficient method for rapidly identifying compounds from existing commercial databases, it’s 

gradually becoming more challenging to find molecules that both satisfy all desired properties and avoid patent 

infringement. To overcome this challenge, de novo molecular design has been developed as a solution[1-3], 

which aims to create new molecules with the desired properties from scratch. Generative deep learning has 

revolutionized the field of de novo molecular design by enabling direct learning from input data without relying 

on human-made rules. This approach has shown great success in the field of de novo molecular design by 

effectively exploring uncharted chemical space for drugs and creating new molecules with specific properties 

[4-6]. For example, genetic expert-guided learning (GEGL) demonstrated impressive performance in several de 

novo molecular design tasks and added genetic algorithms (GA) to generative deep learning through the 

domain-specific genetic operator, which allows for effective exploration of the chemical space [7]. This 

approach has the potential to revolutionize drug discovery by offering a more effective method of identifying 

potential drug candidates, but it is necessary to validate the drug-likeness of these newly designed molecules. 

Drug-likeness is a crucial element in drug discovery, which helps to increase the success rate of clinical 

trials, reduce costs, and filter out compounds with a high likelihood of failure. Computational filters have been 

developed to distinguish between drug-like and non-drug-like molecules, such as Lipinski’s rules [8]. However, 

relying solely on a single drug-likeness property has limitations in drug discovery, as the definition of drug-
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likeness has expanded to include various molecular properties that may not necessarily be related to drug 

efficacy or safety. Therefore, it is necessary to separately consider pharmacodynamic and pharmacokinetic 

properties in the drug discovery process for effective drugs. Pharmacodynamic properties relate to a drug 

molecule's ability to interact specifically with a biological target without causing off-target effects. 

Pharmacokinetic properties determine if a drug molecule will reach its target protein and persist in the 

bloodstream, and this includes processes such as absorption, distribution, metabolism, and excretion (ADME), 

while toxicity refers to adverse or harmful drug effects, and its examination is crucial for identifying potential 

risks and reducing negative side effects. Improving drug-likeness requires optimizing multiple factors such as 

target specificity and ADME/T together, and this is essential for discovering effective drugs. 

Targeting a single protein has been successful in managing many diseases, but complex diseases require 

alternative approaches like combination therapy and multi-target drugs. Dual-action drugs have two distinct 

desired effects at a single effective dose from two separate modes of action, making them versatile for treating a 

variety of diseases. For instance, acetylcholinesterase (AChE) inhibitors increase cholinergic levels in the brain 

to treat Alzheimer’s disease (AD), by enhancing the cholinergic levels in the brain [9], while monoamine 

oxidase (MAO) inhibitors reduce oxidative damage and have the potential for treating AD [10]. AChE/MAO 

dual inhibitors are believed to be more effective in treating AD, and ladostigil showed a neuroprotective ability 

and stimulated the processing of amyloid precursor protein (APP) alpha through AChE/MAO dual inhibition [10, 

11]. However, computationally designing AChE/MAO dual inhibitors is a challenging task due to the complex 

balance of target specificity. 

Quantitative structure-activity/property relationship (QSAR/QSPR) methods have been widely used for 

predicting target specificity and ADME/T properties by identifying molecular features in known active and 

inactive ligands. While QSAR models can help eliminate undesirable compounds during drug design and 

provide feedback for lead optimization, they are not able to create or generate new molecules with desired 

properties. Therefore, QSAR models should be combined with other computational methods to generate new 

molecules with desired properties. 

In this study, I devised aneffectivecomputational methodology named Scoring-Assisted Generative 

Exploration (SAGE) by integrating the GEGL framework and multiple QSAR models.MySAGE expandedthe 

GEGL for practical use by enabling virtual synthesis simulation, generating bridged bicyclic rings for greater 

chemical diversity, and adding multiple scoring models for drug-likeness. Firstly, I performed pretraining of 

SAGE on various datasets to create a model capable of the most diverse compounds. Secondly, I carried out a 

benchmark to generate compounds for finding the bridged bicyclic ring structures based on the presence or 

absence of chemical diversification. Thirdly, I evaluated the chemical design ability of SAGE in generating 

compounds with desired properties by optimizing drug-likeness in six protein targets using six QSAR models 

for target specificity and 11 QSPR models for ADME/T properties. Lastly, I performed a task of identifying a 

dual inhibitor of AChE and MAO type B (MAOB) using two QSAR properties for target specificity and 12 

QSPR models for ADME/T properties. My results showed that SAGE can effectively explore chemical space 

and optimize multiple properties using various scoring models, making it useful for discovering molecules with 
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desired properties at an early stage of drug discovery. 

2. Methods 

2.1. Scoring-Assisted Generative Exploration (SAGE) 

Scoring-Assisted Generative Exploration (SAGE) is aneffective framework for generating high-scoring 

molecules with deep neural networks (DNN), chemical diversification operators, and various scoring models for 

desired objectives. The DNN in SAGE is pre-trained with chemical datasets and based on long-short-term 

memory (LSTM) networks [12]. Molecules are represented as a sequence of characters in the simplified 

molecular-input line-entry system (SMILES) format [13]. Chemical diversification operators in SAGE consist 

ofmutate, crossover, and virtual synthesis operators. The mutate operator makes various chemical modifications 

to the molecules at the atom level, such as appending atoms, inserting atoms, changing bond orders in covalent 

bonds, adding ring bonds, deleting ring bonds, and forming a bridge bicyclic ring in a ring substructure. The 

crossover operator randomly breaks a pair of parent molecules into fragments and combines two fragments to 

create a new molecule at the functional group level, where a fragment can be attached to the bridgehead atoms 

in bridged bicyclic rings. The virtual synthesis operator is based on a virtual assembly employed in the design of 

innovative new chemical entities generated by optimization strategies (DINGOS) [14] at the molecule level. The 

DINGOS algorithm consists of four key steps, including the generation of the molecular building block library, 

choosing a subset of the closest molecules to the original structure, construction of optimal intermediates and 

products, and repeating the process until a termination criterion is met. As a result, it allows for the generation of 

novel compounds through scaffold hopping based on ligand similarity and feasibility at the molecule level. After 

chemical generation and diversification, molecules are ranked based on their scores, and a fixed number of top-

ranked molecules are selected for fine-tuning of the DNN through a storage buffer in every step. It is worth 

noting that the top-ranked molecules in the storage buffer are maintained throughout the entire process, 

regardless of the step. 

     The compounds used for pre-training the SAGE models were categorized into three groups, namely 

synthetic compounds, natural products, and bioactive compounds, and are summarized in Table 1. Two groups 

of synthetic compounds were obtained from the ZINC Clean Leads [15, 16], and 11 commercially available 

vendors (BIONET, Chembridge, ChemDiv, Enamine, IBS, LifeChemical, Maybridge, MolPort, Specs, 

TargetMol, and VitasM). Natural products were collected from ZINC20 [17], while bioactive compounds were 

collected from ChEMBL24[18]. The compounds were randomly partitioned into training, validation, and test 

sets with proportions of 0.882, 0.098, and 0.02, respectively. 

The DNN in SAGE for pretraining comprises a 3-layered LSTM with 1,024 hidden units and a dropout 

probability of 0.2. Optimization was performed using the Adam optimizer [19], with a learning rate of 0.001 and 

a batch size of 1,024. The DNN was pre-trained for 300 epochs on four datasets (ChEMBL24, Synthetics, ZINC, 

and ZINC-NP) and the final model weights were selected based on the minimum average loss on the validation 

and test sets. The generated molecules were evaluated for validity, uniqueness, novelty, and internal diversity. 

Validity assesses how well the DNN incorporates chemically reasonable constraints and grammar in SMILES, 
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such as maintaining proper valence. Uniqueness measures how well the DNN avoids generating only a few 

typical molecules, while Unique_1k is the uniqueness obtained by examining the first 1,000 valid molecules in 

the generated set. Novelty calculates the percentage of generated molecules that do not exist in the training set. 

IntDiv_1 and IntDiv_2 measure the chemical diversity within the generated molecule sets, with higher scores 

indicating greater diversity. 

SAGE adopts an iterative fine-tuning approach, wherein each iteration leverages the principles of fine-

tuning and reuses the parameters in the pretraining phase. This strategy allows the model to retain the 

knowledge gained through pretraining while fine-tuning it on the target task, resulting in improved performance 

and convergence. During each iteration of SAGE, the DNN generates 8,192 molecules, which undergo filtering 

to remove invalid SMILES or non-drug-like molecules through Muegges drug-like filters. The remaining 

molecules are then evaluated using scoring models that are suitable for each task objective, and the top 1,024 

molecules are saved in the storage buffer. The crossover operator is then applied to at most 8,192 pairs of 

molecules randomly selected from the storage buffer. If the crossover operator cannot be applied due to overly 

simplistic molecules, the operation is skipped with a probability of 0.01. Upon a successful crossover operation, 

the mutate (M), virtual synthesis (V), and bridged bicyclic (B) operators are applied according to pre-defined 

probabilities (M100, M75/V20/B05, M50/V45/B05, and M25/V70/B05).If a new molecule is not generated 

from the parent pair, the process can be repeated upto 10 to generate a new compound. The invalid or non-drug-

like ones are filtered out, and the top 1,024 molecules are saved in the storage buffer. The duplicate-removed 

storage buffer, which can have at most 1024, is used for fine-tuning the DNN.Optimization for the fine-tuning 

was performed using the Adam optimizer, with a learning rate of 0.001 and a batch size of 256 for 8 epochs. For 

benchmarking purposes, I conducted 100 iterations of SAGE for the GuacaMol and bridged bicyclic ring tasks 

and 50 iterations for inhibitor design tasks, with a maximum SMILES length of 100.To establish baseline 

models (SMILES LSTM and SMILES GA), I introduced specific modifications to SAGE. The reward 

parameter was fixed at a minimal value of 0.01, and I refrained from proceeding with the DNN training under 

these conditions. This approach effectively disables the ranking-based fine-tuning mechanism, a core component 

of SAGE, allowing us to isolate and analyze the algorithm's fundamental capabilities. The SMILES LSTM and 

SMILES GA models generated 16,384 molecules in the GuacaMol benchmark, while the SAGE in inhibitor 

design tasks generated 8,192 molecules through SMILES LSTM and 8,192 molecules through SMILES GA. 

2.2. Goal-Directed Benchmarks 

Six goal-directed benchmarks for model performance evaluation were derived from the GuacaMol[20]. 

Rediscovery tasks involvethe rediscovery of specific target compounds, namely Celecoxib, Troglitazone, 

Thiothixene, and all bridged bicyclic compounds. Meanwhile, similarity tasks aimed to generate molecules 

closely resembling specific target compounds, such as Aripiprazole, Aluterol, Mestranol, and all bridged 

bicyclic compounds. For each of these target compounds, I selected the top 100 generated molecules that 

exhibited a similarity score above a 0.75 threshold. In the rediscovery tasks of theGuacaMol and bridged 

bicyclic benchmarks, the similarity between each target compound and the top1 generated molecule was 

assessed using the ECFP4 molecular fingerprint. The similarities between the respective molecules and 
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Aripiprazole, Aluterol, Mestranol, and all bridged bicyclic compounds were measured using distinct molecular 

fingerprints: ECFP4 for Aripiprazole and all bridged bicyclic compounds, FCFP4 for Aluterol, and AP for 

Mestranol.Isomer tasks revolve around the creation of molecules that align with a given molecular formula, 

assessing theoverfitting problem of only producing molecules with a simple pattern. 

Multiple property optimization (MPO) tasks involve the modification of known drug molecules, such as 

Fexofenadine, Ranolazine, Perindopril, Amlodipine, Sitagliptin, and Zaleplon, for structural or physicochemical 

properties, where I selected the top100 generated molecules and compared the multiple properties. In the 

Fexofenadine MPO task, I employed the geometric mean of AP fingerprint-based similarity, a LogP target of 4, 

and a topological polar surface area (TPSA) with a target of 90.For theRanolazine MPO task, the geometric 

mean of AP fingerprint-based similarity, a LogP target of 7, a TPSA target of 95, and the presence of one 

fluorine atom were used as the optimization criteria. In the case of Perindopril MPO, I utilized the geometric 

mean of ECFP4 fingerprint-based similarity and the number of two aromatic rings. The Amlodipine MPO task 

involved using the geometric mean of ECFP4 fingerprint-based similarity and the presence of two carbon rings. 

Finally, the Sitagliptin MPO task included an ECFP4 fingerprint-based similarity, a LogP of 2, a TPSA of 77, 

and a simultaneous isomer task targeting the C16H15F6N5O molecular formula. 

The Valsartan SMARTS task focuses on molecules that manifest SMARTS pattern associated with valsartan, 

and that have similar physicochemical properties with the sitagliptin. Scaffold- and decorator hopping tasks 

endeavor to maximize the congruity with SMILES string, either preserving or excluding particular SMARTS 

patterns. It can maintain specific substituents and modify the scaffold of a compound, while it can maintain a 

consistent scaffold and alter the substitution pattern.The scaffold and decorator hopping tasks in the GuacaMol 

used one SMARTS pattern for scaffold (‘[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12’) and three SMARTS 

patterns for decoration (‘CS([#6])(=O)=O’, ‘[#7]-c1ccc2ncsc2c1’, and ‘[#6]-[#6]-[#6]-[#8]-

[#6]~[#6]~[#6]~[#6]~[#6]-[#7]-c1ccc2ncsc2c1’).To evaluate the ability to generate bridged bicyclic ring 

structures, Iadopted four goal-directed benchmarks named rediscovery and similarity tasks.All similarities of the 

molecules with bridged bicyclic rings were measured with the ECFP4. 

2.3. Chemical Filters and Score Definition 

The development of a precisely defined scoring function was essential for the SAGE model’s 

effectiveness in generating chemicals with targeted properties. An inadequately defined scoring function could 

lead to suboptimal outcomes, diverging from intended objectives. To align the scoring functions with the desired 

molecular properties, I focused on five key factors: simple drug-likeness, target specificity, synthetic 

accessibility, solubility, and ADME/T properties. 

Initially, my SAGE model involved implementing several chemical filters based on simple rule-based drug-

likeness.These filters categorize molecules as potential drugs or non-drugs, drawing upon their similarity to 

known drugs in the feature space. To provide a rough estimate of a molecule’s drug-likeness, I employed the 

Muegge filter[21].This filter disqualifies compounds if they fall outside specific criteria: a molecule weight 

outside the range of 200 to 600, a LogP greater than 6, more than six hydrogen donors, over twelve hydrogen 
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acceptors, more than fifteen rotatable bonds, more than seven aromatic rings, fewer than two heteroatoms, or 

less than five carbon atoms.By applying these criteria, I ensure that only molecules conforming to essential 

drug-likeness standards progress to further evaluation. This preliminary filtering step is crucial as it assesses 

molecular properties against established benchmarks, effectively eliminating compounds that are less likely to 

demonstrate the desired pharmacological profiles.Following this initial filtering, I introduced four distinct 

scoring functions into the SAGE model. Eachfunction contributes a maximum of one point, cumulatively 

reflecting a comprehensive assessment of the molecule's characteristics. 

Score 1 exclusivelyfocuses ontarget specificity, leveraging the predictive power of the QSAR model for each 

protein target. Ranging from 0 to 1, this score quantifies the likelihood of a molecule being an effective inhibitor 

for a given protein target. For the dual inhibition task (AChE/MAOB), Score 1 is determined by averaging the 

prediction scores from both targets. This approach ensures a balanced assessment of molecules aimed at 

multiple targets.The values obtained from my QSAR classification models provide a quantitative measure of the 

likelihood that a molecule will act as an effective inhibitor. These probabilities reflect the probability that a 

molecule's binding affinity to its protein target is greater than 1 µM. This probability is a crucial indicator of a 

molecule’s potential as an inhibitor, ensuring that the SAGE model prioritizes compounds with a higher 

likelihood of being potent and specific to the intended targets. 

Score 2 builds upon the foundation established by Score 1, integrating the concept of synthetic accessibility into 

the assessment. This score, with a range from 0 to 2, is calculated by summing the target specificity score (Score 

1) and the synthetic accessibility measure. For determining synthetic accessibility, I employed the retrosynthetic 

accessibility score (RAscore), a metric that enables the rapid estimation of a molecule’s synthetic 

feasibility[22].RAscore ranges from 0 to 1 and assesses the likelihood of successfully identifying retrosynthetic 

routes for a molecule using the AiZynthFinder tool[23]. A score closer to 1 indicates a higher probability of 

finding feasible retrosynthetic pathways, reflecting the molecule’s ease of synthesis. 

Score 3 further advances the evaluation process by adding the concept ofsolubility.This score, with a range from 

0 to 3, is derived by summing up Score 2 with the apparent solubility of the molecule. To accurately and 

efficiently predict aqueous solubility, I utilized the molecule attentions transformer (SolTranNet) [24]. 

SolTranNet is adept at predicting the solubility of small organic molecules in water, thereby facilitating the 

identification of compounds with favorable solubility properties. In this context, the solubility measure is 

quantified in a binary manner: a score of 1 is assigned if the generated molecule is soluble, and a score of 0 if it 

is not. The determination of a molecule's solubility is based on its LogS value. Typically, a molecule is 

considered soluble if its LogS falls within the range of -4 to 0.5 log mol/L [24]. However, due to the relatively 

high false discovery rate of SolTranNet at the -4 threshold (28.6%), I have adopted a more flexible threshold of -

6, which significantly reduces the false discovery rate to 1.3% [24]. 

Score 4 represents the advanced stage of my comprehensive molecule assessment, where I integrated 

pharmacokinetic aspects through ADME/T profiling.This score, with a range of 0 to 4, is calculated by 

combining the value of Score 3 with the ADME/T profile score. However, the inclusion of the ADME/T profile 

score with the ADME/T profile score within Score 3 is subject to two specific conditions. Firstly, all scores of 
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target specificity, synthetic accessibility, and solubility must exceed a threshold of 0.75. This criterion ensures 

that ADME/T profiling is typically conducted on molecules that have already shown substantial potential 

efficacy. Secondly, the ADME/T profile score is only added if the QSAR score for the human Ether-à-go-go-

Related Gene (hERG) inhibition remains below a critical threshold of 0.5. Given the crucial role of hERG in 

maintaining heart rhythm, its inhibition can lead to significant adverse effects, where molecules with a binding 

affinity (IC50) of 40 µM or stronger were classified as positive while those weaker than 40 µM were classified 

as negative in the dataset[25], thus making it a vital consideration in evaluating drug safety, especially 

concerning cardiac health. 

The ADME/T profile scoreis a key component of my comprehensive molecule assessment and includes 11 

QSPRmodels for single-target tasks and 12 for the dual inhibitor task. The AChE/MAOB dual task includes an 

additional indicator for the blood-brain barrier (BBB) permeability.Inmy ADME/T profile evaluation, I 

employed QSPR models to predict a range of pharmacokinetic and toxicity properties. Each indicator in the 

ADME/T profile, ranging from 0 to 1, is integral in determining a molecule’s overall suitability as a therapeutic 

agent.To calculate the ADME/T profile score, I averaged the scores from all relevant QSPR models. For single-

target tasks, I used 11 QSPR models, each contributing approximately 2.27% to Score 4. For the dual-target task, 

I averaged 12 QSPR models, with each contributing around 2.08% to Score 4. This approach ensures the score 

remains within a maximum of 1, providing a consistent and balanced evaluation across different tasks. 

For absorption, I assessed Caco-2 membrane permeability (Caco2), human intestinal absorption (HIA), and P-

glycoprotein inhibition (Pgp). The Caco-2 cell line is used to estimate drug permeation through intestinal tissue, 

where the maximum value is -3.51, the minimum value is -7.76, and the average value is -5.24 in the 

dataset[26].A compound is generally considered to have proper permeability if its predicted Caco2 permeability 

exceeds -5.15 log cm/s [27], so I have set -5.15 log cm/s as the threshold for determining acceptable 

permeability in myassessment. HIA is crucial for drug delivery through the gastrointestinal system to the 

intended target, where molecules with intestinal fraction absorption of 30% or higher were classified as positive 

while those below 30% were classified as negative in the dataset[28].Pgp is an ABC transporter responsible for 

transporting substances in and out of cells, and its inhibition can impact a drug’s bioavailability and safety, 

where the molecules with abindng affinity (IC50)stronger than 15 µM were classified as positive while those 

with binding affinity weaker than 100 µM were classified as negative in the dataset[29]. 

In evaluating distribution, I considered the human plasma protein binding rate (PPBR) and BBB permeability. 

PPBR measures the proportion of a drug bound to plasma proteins in the bloodstream, and the rate significantly 

affects the drug’s delivery to its target, where the maximum value is 99.95, the minimum value is 10.09, and the 

average value is 86.73 in the dataset[30].A compound is generally classified as having high binding if its PPBR 

exceeds 80%. I have established 80% as the threshold for acceptable plasma protein binding, ensuring that 

compounds meet this criterion for effective drug delivery.BBB serves as a protective layer separating the 

circulating blood from the extracellular fluid in the brain, where molecules with BBB penetration partition of -1 

or higher were classified as positive while those lower than -1 were classified as negative in the dataset[31]. Its 

penetration is a critical factor in drug delivery, as a molecule must pass through the BBB to reach its intended 
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target within the brain. 

For metabolism, myfocus is on the inhibition of cytochrome P450 genes (CYP2C9, CYP2D6, and CYP3A4). 

These genes are necessary for the metabolism or breakdown of many molecules within cells, and if a drug can 

block these enzymes, it may result in poor metabolism, where molecules showing no response at concentrations 

up to 57 µM were classified as negative whilethose exhibiting a response were classified as positive in the 

dataset[32]. In toxicity assessment, I considered lethal dose 50 (LD50), hERG inhibition, mutagenicity (AMES), 

and drug-induced liver injury (DILI). LD50 measures rat acute toxicity and determines the lowest dose of a 

substance that can cause lethal side effects, where the maximum value is 10.207, the minimum value is -0.343, 

and the average value is 2.544 in the dataset[33].Acompoundis classified as acutely toxic if its LD50, 

determined via rodent oral administration, is below 300 mg/kg.Assuming a molecular weight of 300, thisLD50 

corresponds to 5 log(1/mol/kg), a value I have adopted as the threshold criterion.AMES refers to a drug’s 

capacity to harm DNA and lead to cell death or other negative consequences, where molecules, which increased 

the number of revertant colonies per plate in a dose-related manner in the Ames test, were classified as positive 

while those that do not were classified as negative in the dataset[34]. DILI is a serious liver disease that can be 

caused by certain drugs, where molecules with a high risk of DILI or the potential to cause any adverse liver 

effects in their annotations were classified as positive while those with no risk of DILI or not associated with 

any adverse liver effects in the dataset[35]. 

2.4. Data sets for Target specificity and ADME/T prediction 

The ligand structures used for target specificity were obtained from the DUD-E benchmarking sets [36] and 

ChEMBL32 [18], as summarized in Table 1. To ensure a comprehensive evaluation of my SAGE program’s 

applicability across diverse biological functions and structures, Istrategically selected six protein targets: 

Acetylcholinesterase (AChE), Cyclooxygenase-2 (COX-2), Protein kinase C beta (PKCB), Fibroblast growth 

factor receptor 1 (FGFR1), Protein-tyrosine phosphatase 1B (PTP1B), and Monoamine oxidase B 

(MAOB).These targets were chosen not only for their evenly distributed active and inactive experimental data, 

which helps to avoid bias from unbalanced datasets, but also because they represent a diverse range of 

functional classes in pharmacological contexts. This variety in selection underscores the versatility and potential 

broad applicability of the SAGE program, demonstrating its effectiveness across different types of protein 

targets with unique structural and functional attributes. 

To create QSAR models for predicting ADME/T properties, I gathered ligand structures from Therapeutics Data 

Commons [37], which are summarized in Table 1. I selected 12 ADME/T properties, including Caco2[26], 

HIA[28], Pgp[29], PPBR[30], BBB[31], CYP2D6[32], CYP3A4[32], CYP2C9[32], LD50[33], hERG[25], 

AMES[34], and DILI[35], with three (Caco2, PPBR, and LD50) being predicted as regression tasks and the 

remaining nine as classification tasks. 

2.5. Molecular Fingerprints and Machine Learning 

To quantify the structural similarity of chemical compounds, I used two-dimensional (2D) chemical fingerprints 

as binary features. Firstly, I used predefined 2D chemical fingerprint dictionaries, which were designed for the 
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analysis of large chemical libraries. The molecular access system (MACCS) is one of the most frequently used 

fingerprint schemes for quantifying similarity with 166-bit MACCS keys [38], while the PubChem system 

utilizes substructure fingerprints (PCFP) to represent chemical structures and enable similarity searching and 

neighboring with 881 structural keys [39]. Secondly, atom-connectivity fingerprints in the molecules were 

considered. The extended-connectivity fingerprints (ECFP) were designed for structure-activity modeling and 

representing circular atom neighborhoods rather than substructure and similarity searching [40]. Function-class 

fingerprints (FCFP) are a type of ECFP-based fingerprints but have different indexing of the roles of specific 

atoms in the environment. Because the FCFP does not distinguish between different atoms or groups with the 

same or similar function, it can be used for pharmacophore-like fingerprints. I generated the ECFP with a 

diameter of 6 (ECFP6) and FCFP with a diameter of 4 (FCFP4) as 1024 bits using RDKit[41] and Morgan 

algorithms [42]. By concatenating MACCS keys and three fingerprints (PCFP, ECFP6, and FCFP4), the more 

complex fingerprints (MACCS+PCFP, MACCS+ECFP6, and MACC+FCFP4) were generated and used as 

features for QSAR models. 

To develop QSAR models for target specificity, I used the Scikit-learn package [43] in Python to perform 

a stratified split of the data, with 80% of the compounds used for training and 20% for test sets, while 

maintaining a fixed random seed. For QSAR models related to ADME/T, I employed a scaffold-based split in 

Therapeutics Data Commons [37]. During the training phase, I used 10-fold cross-validation with 

GridSearchCV in the Scikit-learn package [43]. To evaluate classification tasks on the test sets, I used various 

metrics such as AUC, Precision, Recall, and F1-score. AUC measures the area under the receiver operating 

characteristic curve, which shows the model's ability to distinguish between classes. Precision, or positive 

predictive value, indicates the proportion of true positives among the predicted positives. Recall is sensitivity or 

true positive rate and represents how many of the actual positives the model correctly identified as positive. F1-

score is a harmonic average of precision and recall and is a better measure to use if a balance between precision 

and recall is needed. Additionally, a threshold value of 0.5 was used in the classification model to decide the 

class labels. 

I utilized four ensemble-based machine learning algorithms: gradient boosting machine (GBM), light gradient 

boosting machine (LGBM), random forest (RF), and extreme gradient boosting (XGB). These algorithms use 

decision trees to prevent overfitting and reduce variance, with each decision tree analyzing numerical features to 

generate continuous outputs. The decision trees are constructed sequentially and adjusted to the differences 

between actual and predicted values generated by previous trees. 

The hyperparameter tuning parameters are summarized in Table S1. Iconducted a grid search to find the 

best model in four hyperparameters in GBM, two in LGBM, and two in RF and XGB. In GBM, I used four 

hyperparameters for tuning the models: the number of gradient-boosted trees (n_estimators), the maximum tree 

depth for base learners (max_depth), the number of features to consider when selecting the best split 

(max_features), and the boosting learning rate (learning_rate). In LGBM, I used two hyperparameters: the 

number of gradient-boosted trees (n_estimators) and the boosting learning rate (learning_rate). In RF, I used two 

hyperparameters: the number of gradient-boosted trees (n_estimators) and the number of features to consider 
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when selecting the best split (max_features). In XGB, I used three hyperparameters: the number of gradient-

boosted trees (n_estimators), the maximum tree depth for base learners (max_depth), and the boosting learning 

rate (learning_rate). 

I conducted a 10-fold cross-validation and grid search to find the optimal values of each set of descriptors. 

The optimal hyperparameters were determined based on the model performance in the cross-validation sets, and 

I selected the 12 optimal models for each task. The best model was selected from the 12 optimal models based 

on the geometric mean of two performances in the cross-validation and test sets. 

2.6. Molecular Simulations 

X-ray crystal structures of human AChE (PDB ID: 6NTO[44]) and human MAOB (PDB ID: 1S3B [45]) were 

obtained from the Protein Data Bank (PDB) [46]. Missing side chains were predicted using Prime[47], and 

hydrogen atoms were added to these protein structures at a pH of 7.0. The coordinates of these atoms were 

subsequently optimized with PROPKA3[48]. The restrained energy minimization was performed with OPLS3 

within 0.3 Å root-mean-square deviation (RMSD)[49]. 

Molecular docking was performed using Glide-SP in Prime [50], selecting the docking poses with the highest 

docking scores for dual targets (AChE and MAOB). The protein-ligand complexes of AChE with Ladostigil and 

the top-ranked molecule were incorporated into an orthorhombic box containing 15,329 and 15,303water 

molecules (TIP3P model), respectively, as generated by a 10 Å buffer distance.The protein-ligand complexes of 

MAOB with Ladostigil and the top-ranked molecule were similarly inserted into an orthorhombic box with 

15,930 and 15,305 water molecules, respectively. To achieve a neutral system and simulate a physiological 

concentration of 0.15 M, the AChE system with Ladostigilincorporated 52 Na+ and 43 Cl- ions, while the AChE 

system with the top-ranked moleculeincluded 54 Na+ and 43 Cl-. Similarly, the MOAB system with Ladostigil 

involved 47 Na+ and 44 Cl- ions, whereas the MAOB system with the top-ranked molecule incorporated 48 Na+ 

and 43 Cl- ions. 

Molecular dynamics simulations were conducted employing Desmond [51]using an OPLS3 force field and an 

NVT ensemble, ensuring a constant number of particles, volume, and temperature. The Particle-mesh Ewald 

method was applied to compute long-range and short-range interactions with a cutoff of van der Waals and 

electrostatic interactions of 9 Å[52]., Nose-Hoover thermostats were employed to maintain a constant 

temperature of 300 K [53]. The RESPA integrator was utilized to combine the equations of motion with a time 

step of 2.0 fs for bonded and non-bonded interactions[54]. A 50 ns simulation was conducted using the default 

Desmond protocol, and the conformations and energies were stored at 50 and 1.2 ps intervals, respectively. For 

analysis, only conformations extracted from the 10 ns to 40 ns timeframes were considered, thereby excluding 

potentially unstable conformations from the initial and terminal phases of the simulations.I measured the RMSD 

values with heavy atoms of the protein and ligandstructuresbased on a reference frame. 

3. Results 

3.1. Scoring-Assisted Generative Exploration (SAGE) 
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Scoring-assisted generative exploration (SAGE) combines deep neural networks (DNN), genetic 

improvement operators, and multiple scoring models to generate highly rewarding molecules through iterative 

fine-tuning(Figure 1). To enhance the generation of structurally diverse compounds, I have expanded the 

capabilities of SAGE by incorporating features that enable virtual synthesis simulation and the creation of 

bridged bicyclic rings. The effectiveness of the SAGE algorithms was validated with three goal-directed 

benchmarks and the datasets used in this study are summarized in Table 1.I introduced four distinct models 

named M100, M75/V20/B05, M50/V45/B05, and M25/V70/B05 for the newly added operators, each based on 

their probability distribution of the newly added operators. Notably, the M100 operates identically to the original 

GEGL. 

Firstly, I applied the SAGE algorithms to general goal-directed benchmarks in GuacaMol[20], with the 

summarized results in Table 2.For the GuacaMol benchmark, I initialized the LSTM models using the weights 

provided by Brown et al. [20], which were pre-trained with the ChEMBL24 database [18].In the GuacaMol 

benchmark, the performance scores for M100, M75/V20/B05, M50/V45/B05, and M25/V70/B05 were 16.401, 

16.507, 16.443, and 16.458, respectively,demonstrating an improvement over the scores achieved by two 

baselines without the ranking-based fine-tuning mechanism (a reward system), including SMILES LSTM 

(11.258) and SMILES GA (9.440). Both M100 and my SAGE models incorporate elements from SMILES 

LSTM and SMILES GA, with my SAGE models showing equal or superior performance compared to the 

highest scores obtained by M100, SMILES LSTM, and SMILES GA in the GuacaMol benchmark tasks. 

In contrast to the M100, mySAGE models can generate more complex molecules due to the addition of virtual 

synthesis and bridged bicyclic ring operators. Virtual synthesis operators allow for the exploration of a broader 

chemical space by simulating potential synthetic pathways, which can lead to novel molecular scaffolds. The 

inclusion of bridged bicyclic ring operators specifically aids in constructing more intricate ring systems, which 

are often found in bioactive compounds. These enhancements in molecular complexity are advantageous for 

MPO tasks that require balancing multiple physicochemical properties simultaneously. This is evident in MPO 

tasks involving compounds like Perindopril, Amlodipine, Sitagliptin, and Zaleplon in Table 2, which are 

octahydroindole, dihydropyridine, triazolopiperazine, and pyrazolopyrimidine derivatives, respectively, 

demanding complex molecular structures. The Amlodipine task focused on maintaining three carbon rings, and 

the Sitagliptin and Zaleplon tasks involved generating isomers. In these intricate tasks, where maintaining a 

specific number of rings or generating isomers while optimizing other properties is crucial, my SAGE achieved 

a higher score than that of M100. This enhanced performance is attributed to the increased complexity that the 

virtual synthesis and bridged bicyclic ring operators add to the molecule generation process. 

Secondly, in myexploration of SAGE’s abilities, I paid particular attention to its performance on the 

rediscovery and similarity tasks, where the SAGE should generate compounds resembling a specified target 

molecule removed from the training set. I further validated the ability of SAGE to discover eleven compounds 

with structurally complex bridged bicyclic rings, which is summarized in Table 3. For the bridged bicyclic ring 

benchmark, I initialized the LSTM models using the weights provided by Ahn et al. [7], which were pre-trained 

with the ZINC database [55]. As a result, the M75/V20/B05 showed the best score of 21.141 by more effectively 
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generating bridged bicyclic ring structures, while the M100 achieved a score of 20.790. Moreover, in the 

benchmark tasks in Table 2 and Table 3, the M75/V20/B05 did not record a lower score than the M100 in a 

single instance. It indicates that SAGE is not only capable of replicating the functionalities of the M100 but is 

also adept at de novo design for more structurally complex molecules than the M100. Therefore, Iemployedthe 

M75/V20/B05 probability for SAGE. 

3.2. Pre-training the SAGE models with four databases 

To validate the suitability of SAGE for de novo design, I applied the SAGE algorithm to identify new 

potential inhibitors for a target protein. I pre-trained SAGE on four datasets (ChEMBL24, Synthetics, ZINC, 

and ZINC-NP), the details of which are summarized in Table 1. Then I generated 1000, 3000, and 5000 

molecules for each dataset with the pre-trained SAGE, which are summarized in Table S2.I employed 

commonly used four metrics in de novo design for comparison (validity, uniqueness, novelty, and internal 

diversity). Firstly, all pre-trained models showed high validity and high uniqueness scores, which indicates that 

all models can generate minimal duplicate molecules.Secondly, the novelty metric increased in the order of 

ZINC-NP, ChEMBL24, Synthetics, and ZINC. A lower value in this metric suggests that the pre-trained model 

is generating molecules similar to those found in the training set. The natural product (ZINC-NP) and bioactive 

compounds (ChEMBL24) datasets led to the generation of molecules that reflect the characteristics inherent to 

the training sets. It indicates that the DNN is learning the features of natural products or bioactive compounds 

through the pre-training process, which is an expected outcome.Given my objective to generate new potential 

inhibitors, not present in the training set, for a target protein, I selected synthetic compounds. Thirdly,I 

compared internal diversity scores between Synthetics and ZINC databases, where the model pre-trained with 

Synthetics showed a better score than that with ZINC. Based on these outcomes, I employed the SAGE, which 

is pre-trained on commercially available synthetic compounds (Synthetics). 

3.3. QSAR models for target specificity and Single property optimization with SAGE 

After pre-training, Imade single property optimization tasks for target specificity. To make QSAR models for 

target specificity, I selected six protein targets (AChE, COX-2, PKCB, FGFR1, PTP1B, and MAOB),which 

have balanced sets of experimentally active and inactive ligands and represent a range of different functional 

classes and possess unique structural and functional characteristics among the protein targets in the DUD-E 

benchmarks [36]. I fine-tuned the hyperparameters through 10-fold cross-validation and selected the best model 

based on the geometric mean of the AUC scores in cross-validation and test sets (Tables S3-S4). The 

performance metrics of the best-found models are summarized in Table 4. These models were then integrated 

into SAGE for inhibitor design tasks against the six protein targets. To restrict the chemical space into drug-like 

molecules, Iemployed Muegge’s drug-likeness for chemical filters. I gradually added extra points for synthetic 

accessibility (Score 2) and solubility (Score 3), starting with a single target specificity (Score 1) to evaluate the 

ability of SAGE to design inhibitors (Figure 2A).As my baseline, Iselectedeach medianscore of the generated 

molecules at every step from the SAGE model without the fine-tuning strategy. 

AChE breaks down acetylcholine, but its inhibitor prevents this breakdown and increases neurotransmitter 
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levels in the brain [56]. The MACCS+PCFP/RF model for AChE showed the best performance (AUC = 0.947), 

with precision, recall, and F1-score of 0.945 in test sets. To maximize target specificity, I combined the best 

model for AChE with SAGE and performed iterativefine-tuning with 50 steps. For Score 1, the SAGE achieved 

a median score of over 0.75 from the 4th step and over 0.90 from the 7th step. For Score 2, the SAGE achieved a 

median score of over 1.75 from the 4th step and over 1.90 from the 7th step. For Score 3, the SAGE achieved a 

median score of over 2.75 from the 4th step, with a median score of over 2.90 from the 7th step. 

COX-2 is an enzyme that converts arachidonic acid to prostaglandin endoperoxide H2, and selective 

inhibitors of COX-2 can lower the risk of peptic ulceration [57]. The MACCS+FCFP4/RF model for COX-2 

showed the best performance (AUC = 0.818) in grid search, with precision, recall, and F1-score of 0.816 in test 

sets. I used SAGE and performed iterative fine-tuning with 50 steps to optimize Score 1, 2, and 3 for COX-2. 

For Score 1, the SAGE achieved a median score of over 0.75 from the 4th step, while it found molecules with 

median scores over 0.90 from the 11th step. For Score 2, the SAGE achieved a median score over 1.75 from the 

5th step, with a median score over 1.90 from the 11th step. When optimizing Score 3, the SAGE achieved a 

median score higher than 2.75 from the 5th step, while it showed a median score over 2.90 from the 12th step. 

PKCB is a crucial protein in the maintenance of nerve functions, and inhibiting its activity has the 

potential as a tumor treatment [58]. The MACCS+FCFP4/RF model performed best for PKCB, with an AUC of 

0.894 and an F1-score of 0.885 in test sets. By combining this model with SAGE, I conducted iterativefine-

tuning with 50 steps to optimize Score 1. The SAGE achieved a median score of over 0.75 in the median from 

the 5th step and a median score of over 0.90 from the 9th step. When I conducted iterative fine-tuning for Score 2 

and Score 3 with 50 steps, the SAGE for Score 2 achieved a median score of over 1.75 from the 5th step and a 

median score of over 1.90 from the 12th step. For Score 3, the SAGE achieved a median score of over 2.75 from 

the 5th step and a median score higher than 2.90 from the 12th step. 

The deregulation of FGFR1 signaling is associated with various human cancers, and targeted inhibitors of 

this pathway have proven successful in tumor therapy [59]. The MACCS+ECFP4/RF model showed the best 

performance for FGFR1 with an AUC of 0.930, precision, recall, and F1-score of 0.929 in test sets. Using 

SAGE with 50 steps, I optimized Score 1, 2, and 3 for FGFR1, achieving median scores over 0.75 from the 5th 

step and over 0.90 from the 10th step for Score 1. For Score 2, the SAGE achieved a median score over 1.75 

from the 6th step and 1.90 from the 16th step, while for Score 3, it found molecules over 2.75 from the 7th step 

and over 2.90 from the 14th step in the median. 

PTP1B overexpression can cause a decrease in insulin receptor phosphorylation, and mutations in the 

PTP1B gene can lead to diabetes, making its inhibitor a potential diabetes treatment [60]. The 

MACCS+PCFP/RF model demonstrated the best performance for PTP1B, achieving an AUC of 0.947, a 

precision of 1.000, a recall of 0.885, and an F1-score of 0.939 in test sets. Using the SAGE to optimize Score 1, 

2, and 3 for PTP1B, I found that the SAGE identified molecules with a median score over 0.75 from the 8th step 

and those over 0.90 from the 21st step. Similarly, when the desired property was changed to Score 2, the SAGE 

generated molecules with median scores over 1.75 from the 11th step and those over 1.90 from the 20th step. For 

Score 3, the SAGE achieved a median score of over 2.75 from the 11th step and over 2.90 from the 14th step. 
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MAOB is an enzyme that breaks down brain chemicals, such as dopamine, and its inhibitors of this 

enzyme can increase dopamine availability in the brain [61]. The MACCS+ECFP6/RF model showed the best 

performance for MAOB, with an AUC of 0.842, a precision of 0.870, a recall of 0.800, and an F1-score of 0.833 

in test sets. Using iterative fine-tuning with SAGE and the best model for MAOB, I optimized Score 1, 2, and 3. 

The SAGE for Score 1 achieved a median score of over 0.75 from the 4th step and over 0.90 from the 6th step. 

For Score 2, the SAGE generated molecules with median scores over 1.75 from the 4th step, and over 1.90 from 

the 7th step. Finally, the SAGE for Score 3 identified molecules with median scores over 2.75 from the 6th step 

and over 2.90 from the 10th step. 

The SAGE algorithm was used to optimize target specificity for six protein targets, achieving median 

scores over 0.75 within 5 steps and higher than 0.9 within 10 steps for Score 1. Synthetic accessibility was then 

added to the desired property and the SAGE for Score 2 generated molecules with median scores over 1.75 and 

1.90 within 5 and 12 steps, respectively, for the six targets. Similarly, when considering solubility in addition to 

target specificity and synthetic accessibility, the SAGE for Score 3 found molecules with median scores of over 

2.75 within 6 steps and higher than 2.90 within 14 steps. For generating top-ranked molecules, the SAGE found 

molecules over 0.90 for Score 1 in the 1st step, over 1.90 for Score 2 in the 2nd step, and over 2.90 for Score in 

the 3rd step, on average across the six targets. 

3.4. QSAR models for ADME/Tand Multiple property optimization with SAGE 

Drug candidates’ success depends on their ADME/T profile in addition to target specificity, synthetic 

accessibility, and solubility. With the accumulation of experimental data and the development of in silico 

prediction models, predicting ADME/T properties has become easier. Therefore, I selected 12 ADME/T 

properties (Caco2, HIA, Pgp, BBB, PPBR, CYP2D6, CYP3A4, CYP2C9, LD50, hERG, AMES, and DILI) [37] 

and developed QSAR models for each. I fine-tuned the hyperparameters and selected the best-found models 

similar to the QSAR models for target specificity. The performance metrics of the best-found models for each 

ADME/T property are summarized in Table 4, while the performance metrics and optimal hyperparameters of 

all models are summarized in Tables S5-S8. 

     The MACCS+FCFP4/RF for Caco2 (MAE = 0.348 and ܴ = 0.776), MACCS+PCFP/XGB for HIA 

(AUC = 0.889), and MACCS+FCFP4/RF for Pgp (AUC = 0.874) were selected for absorption prediction. The 

MACCS+FCFP4/XGB for BBB (AUC = 0.807) and MACCS+FCFP4/RF for PPBR (MAE = 9.126 and 

ܴ = 0.479) were used to predict distribution. The MACCS+FCFP4/LGBM for CYP2D6 (AUC = 0.795), 

MACCS+FCFP4/XGB for CYP3A4 (AUC = 0.811), and MACCS+PCFP/LGBM for CYP2C9 (AUC = 0.795) 

were selected for metabolism. The MACCS+PCFP/RF for LD50 ( MAE = 0.575  and ܴ = 0.613 ), 

MACCS+FCFP4/RF for hERG ( AUC = 0.717 ), MACCS+FCFP4/RF for AMES ( AUC = 0.776 ), 

MACCS+FCFP4/XGB for DILI (AUC = 0.861) were used to predict toxicity. 

Similar to the optimization of single target specificity with SAGE, I evaluated the ability of SAGE for 

MPO tasks of target specificity, synthetic accessibility, solubility, and 11 ADME/T properties, the results of 

which are illustrated in Figure 2B. 
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When the SAGE was employed to maximize Score 4 for AChE, it achieved a score of over 3.5 in the first step 

of the max and from the 10th step in the median. Moreover, a score of over 3.7 was attained from the second step 

of the max and the 23rd step in the median. Secondly, the SAGE was also used for COX-2, where it achieved a 

score of over 3.5 in the first step of the max and from the 6th step in the median. In addition, a score of over 3.7 

was obtained from the 4th step of the max and the 19th step in the median. Thirdly, in PKCB, the SAGE obtained 

a score of over 3.5 from the third step of the max and the 20th step in the median. Additionally, it attained a score 

of over 3.7 from the 4th step of the max but did not achieve a score of over 3.7 in the median. Fourthly, similarly, 

for FGFR1, the SAGE achieved a score of over 3.5 in the first step of the max and from the 10th step in the 

median. It also obtained a score of over 3.7 from the 6th step of the max and the 25th step in the median. Fifthly, 

in PTPB1, the SAGE attained a score of over 3.5 from the 5th step of the max and the 21st step in the median. 

Then, it achieved a score of over 3.7 from the 17th step of the max but did not obtain a score of over 3.7 in the 

median. Lastly, for MAOB, the SAGE achieved a score of over 3.5 in the first step of the max and the 7th step in 

the median. It also obtained a score of over 3.7 from the third step of the max and the 14th step in the median. As 

a result, the SAGE achieved a score of over 3.7 in all six targets, with the best scores being 3.82 for AChE, 

3.826 for COX-2, 3.706 for PKCB, 3.864 for FGFR1, 3.777 for PTPB1, and 3.868 for MAOB in 50 steps. 

3.5. Application of SAGE to Dual inhibitor design of AChE and MAOB 

Multimodal drugs, having multiple targets, offer advantages over traditional drugs, such as reducing the 

risk of drug resistance, improving efficacy, and reducing side effects. However, computational design is 

challenging due to the complexity of their mechanism. To apply the SAGE model to dual inhibitor design, 

Ifocused on AChE and MAOB proteins, inspired by the multimodal compound Ladostigil.The compound 

isknown for its dual actionin Alzheimer's Disease (AD), with IC50 values of 37.1 and 31.8 uM for AChE and 

MAOB, respectively [11, 62]. 

Similar tomy approach in single-target tasks, Iengaged in an iterativefine-tuning process with the SAGE 

model, extending this method over 50 steps for a dual-target task. However, due to the dual-target nature of the 

task, it was necessary to redefine the target specificity that I previously used for single-target tasks. To determine 

the target specificity for the dual-target task involving AChE and MAOB, I employed the average of the 

prediction values from the QSAR models for both AChE and MAOB. My primary objective during this process 

was to enhance the scores of the molecules generated by the SAGE. To address each score's improvement, I 

implemented four independent rounds of enhancement within myiterative fine-tuning process. Each round was 

independently dedicated to elevating one of the scores: Score 1, Score 2, Score 3, and Score 4, respectively.The 

multiple property optimization of SAGE for dual inhibitor design is shown in Figures 3A and 3B. The SAGE 

achieved a score of over 3.5 from the second step (max) and the 13th step (median), and a score of over 3.7 from 

the 8th step (max) and the 32nd step (median). 

To identify the best molecule for the AChE/MAOB dual targets, Imanually filtered all the molecules 

generated by SAGE. In the 50 steps of maximizing Score 4, SAGE generated 305,535 compounds. Among them, 

377 had scores lower than 1, 12,710 had scores between 1 and 2, 169,895 had scores between 2 and 3, and 

122,535 had scores between 3 and 4. All 122,535 compounds had already passed the basic cut-off in Muegge’s 
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drug-like chemical space, as defined by Score 4. To pass the 3-point threshold, a compound must have scores 

greater than 0.75 for average activity (Score 1), synthetic accessibility, and solubility. Secondly, 65,317 

compounds were predicted to have an activity score of 0.75 or higher for both targets when predicting dual-

target activity against AChE/MAOB. Thirdly, based on the QSAR model predicting BBB permeability, 64,619 

molecules were predicted to cross the BBB. Similarly, 21,669 compounds with HIA and Caco2 scores greater 

than 0.75 for both bioavailability and membrane permeability were predicted to pass the QSAR models. Finally, 

I ranked the filtered molecules with Score 4 and selected the top-ranked molecule with a score of 3.736 (Score 

4). 

My scoring systems revealed the profiles of Ladostigil and the top-ranked molecule in Figure 3C, 

highlighting their potential as dual inhibitors for AChE and MAOB. Firstly, Latostigildisplays the QSAR values 

of 0.619 for AChE and 0.611 MAOB.In contrast, the top-ranked molecule exhibits QSAR values of 0.889 for 

AChE and 0.770 for MAOB, indicating a stronger potential for interaction with both AChE and MAOB 

enzymes. Additionally,Ladostigil is characterized by a RAscore of 0.994, a lipophilicity (LogP) of 2.347, a 

solubility (LogS) of -2.679, BBB of 0.937, HIA of 0.987, and Caco2 of -4.644, showing goodsynthesizability 

and favorablepharmacokinetic properties. In comparison, the top-ranked molecule has a RAscore of 0.989, LogP 

of 3.297, LogS of -4.097, BBB of 0.947, HIA of 0.953, and Caco2 of -4.976, also suggesting good 

synthesizability and effective pharmacokinetic profiles. 

Furthermore,I performed molecular docking and dynamics simulations to investigate the molecular 

interactions between the two molecules and dual targets (AChE/MAOB), which are illustrated in Figure 4. I 

employed molecular docking simulations to make protein-ligand complexes for each target with this top-ranked 

molecule. The most favorable docking poses were selected based on the best docking scores.Ladostigilachieved 

docking scores of -4.202 for AChE and -4.891 for MAOB, while the top-ranked molecule exhibited higher 

docking scores of -8.545 for AChE and -11.059 for MAOB.Subsequent molecular dynamics simulations were 

performed, with their results presented in Figure 4A. These simulations revealed that the AChE and MAOB 

protein-ligand complexes with Ladostigil and the top-ranked molecule exhibited fluctuations around the thermal 

average (1-3 Å), demonstrating the stable binding to each target throughout the simulation.The predicted poses 

and important key residues in the simulations are shown in Figures 4B and 4C. In the AChE, Ladostigil showed 

interactions with Y124, W286, F295, Y337, F338, and Y341, while the top-ranked molecules had interactions 

with D74, W86, Y124, S125, F295, F338, and Y341. In the MAOB, Ladostigilhad interactions with Y60, L171, 

Y188, Y326, F343, Y398, G434, and Y435, while the top-ranked molecule has interactions with Y60, L171, 

Q206, K296, Y326, F343, Y398, T426, Y435, and M436. Compared to Ladostigil, the top-ranked molecule 

showed better QSAR scores and molecular simulation results for both AChE and MAOB with similar 

pharmacokineticproperties in other metrics, such as LogP, LogS, BBB, HIA, and Caco2. Therefore, my SAGE 

methodology is effective in generating novel molecules with multiple predicted desirable properties for 

AChE/MAOB dual targets, attributed to myscoring-assisted generative exploration strategywith multiple QSAR 

models. 

4. Discussion 
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Generative deep learning provides an alternative approach to traditional methods of drug design such as 

virtual screening and combinatorial sampling. In this study, I developed SAGE with three functions. First, 

SMILES-based DNN models generate a variety of chemical structures after pre-training on pre-existing 

compound libraries. Selecting an initial compound library for the pre-training suitable for the task is crucial. 

Iemployed the commonly used metrics in de novo design (validity, uniqueness, novelty, and internal diversity) 

to compare the pre-trained models,but it’s worth noting that internal diversity cannot capture all aspects of a 

compound’s diversity [63]. Second, these structures are chemically diversified with mutate, crossover, and 

virtual synthesis operators, which allow for the generation of more complex molecules such as bridged bicyclic 

rings. Third, various scoring models are applied to select top-ranking molecules based on key properties 

necessary for drug-likeness. The SAGE was evaluated on six targets and achieved high scores of over 0.9 within 

an average of 10 steps for Score 1. The SAGE for Scores 2 and 3 found high-scoring molecules of over 1.9 and 

2.9 within 12 steps and 14 steps on average, respectively. The SAGE was able to maximize Score 4, achieving 

high scores of over 3.7 within 50 steps. In my study, I segmented the steps into evaluating the 

pharmacodynamics and pharmacokinetics effects of the generated molecules, reflecting that addressing 

pharmacodynamics is prioritized before considering pharmacokinetics in drug design, rather than adhering to 

the principles of curriculum learning. However, the SAGE can be further advanced by employing curriculum 

learning based on the principle that curriculum learning can reduce complexity by breaking down complex 

objectives into simpler constituent objectives. As a result, SAGE generated drug-like molecules with desired 

properties by directing generative exploration towards high-scoring molecules, facilitating inhibitor discovery 

for six protein targets and even dual targets. 

Muti-target drugs are gaining popularity in the fight against difficult diseases but designing them 

computationally is challenging. To explore new chemical entities for multi-target drugs, deep generative models 

can be used to generate molecules that meet the desired multi-target specificity. In this study, the SAGE was 

used to predict dual-target specificity for AChE and MAOB and to search for molecules predicted to be active 

by each QSAR model. The QSAR is a cost-effective and time-efficient method for identifying active 

compounds, but the reliability and accuracy of these models are reliant on the quality of the training data and 

limited to their application domain. The QSAR models implemented in SAGE were based on molecular 

fingerprints with general applicability for small molecules, which may help the successful applications in this 

work. However, extrapolation outside this domain may lead to reduced reliability and generative models may 

generate molecules outside this domain, leading to a biased exploration of chemical space. To increase the 

likelihood of generating compounds with desired properties using generative models, careful consideration of 

the application domain in the predictive models is necessary, allowing for efficient exploration of chemical 

space[64, 65]. 

Deep generative models like SAGE are revolutionizing drug discovery by enabling more efficient and 

cost-effective processes. By using various scoring models, SAGE identified molecules with high scores for each 

desired objective in a drug-like chemical space. Moreover, by defining desirable objectives with multiple 

scoring models, SAGE can more effectively explore chemical space through iterative fine-tuning. This 

breakthrough in de novo molecular design using deep learning is paving the way for more efficient and cost-
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effective drug discovery processes. With the ability to rapidly explore vast chemical spaces and generate novel 

molecules with desired properties, deep learning-based approaches like SAGE have the potential to 

revolutionize the field of drug discovery and development. 
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8. Data Availability 

All results in this work can be found in the GitHub repository (github.com/hclim0213/SAGE). 
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Figure 1. Scoring-Assisted Generative Exploration (SAGE) 
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Figure 2. SAGE-basedSingleTarget Specificity Optimization for Six Targets. (A) A series of boxplots are 

represented, depicting the steps in the SAGE process across six target proteins, as evaluated with Scores 1, 2, 

and 3. These scores are represented in green, orange, and blue, respectively. The medians of each boxplot are 

highlighted in red, and the baselines are depicted with dashed lines. (B) For Score 4, a series of boxplots is 

shown, illustrating the steps in the SAGE process across the same six target proteins. The medians of these 

boxplots are indicated in red, while the baselines are shown with dashed lines in cyan.  
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Figure 3. SAGE-based DualTarget Specificity Optimization for AChE/MAOB(A) Boxplots for each step of 

the SAGE process in the AChE/MAOB dual target, categorized Scores 1, 2, and 3, are represented in green, 

yellow, and pink, respectively.The medians of each boxplot are highlighted in red, while the baselines are 

depicted with dashed lines in cyan. (B) For Score 4,boxplots depicting each step of the SAGE process in the 

AChE/MAOB dual target are presented in blue. The medians of each boxplot are highlighted in red, and the 

baselines are also depicted with dashed lines in cyan.(C) A top-ranked molecule and Ladostigil are illustrated. 

Their predicted values by SAGE are shown. 
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Figure 4.Molecular dynamics simulations for AChE/MAOB dual target (A) The trajectories in the 

molecular dynamics simulations are depicted in AChE and MAOB dual targets. The heavy atoms in AChE and 

MAOB systems with a top-ranked molecule are shown in blue, while those with Ladostigil are shown in red.(B, 

C) Key residues and important interactions observed in the molecular dynamics simulations in AChE (B) and 

MAOB (C) are depicted.These interactions within the protein-ligand complexes are categorized into three types: 

Hydrophobic, Pi-Pi, Hydrogen bonds, and Water-bridge interactions.  
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Table 1. Summary of Datasets Used in this Study 

Class Task Abbreviation Unit All set 
(active/inactive) Training set Test set 

Pre-train 

ZINC Clean Leads ZINC 

- 

249,456 244,456 5,000 
Commercial Vendors Synthetics 17,134,091 16,791,409 342,682 
Natural Products ZINC-NP 234,997 230,297 4,700 
Bioactives ChEMBL24 369,860 362,463 7,397 

Target 
specificity 

Acetylcholinesterase AChE 

binary 

940 (453/487) 752 188 
Cyclooxygenase-2 COX-2 879 (435/444) 703 176 
Protein kinase C beta PKCB 288 (135/153) 230 58 
Fibroblast growth factor receptor 1 FGFR1 285 (139/146) 228 57 
Protein-tyrosine phosphatase 1B PTP1B 283 (130/153) 226 57 
Monoamine oxidase B MAOB 251 (122/129) 200 51 

Absorption 
Caco-2 membrane permeability Caco2 cm/s 910 728 182 
Human intestinal absorption HIA 

binary 
578 (500/78) 461 117 

P-glycoprotein inhibition Pgp 1,218 (650/568) 973 245 

Distribution 
Human plasma protein binding 
rate PPBR % 2,790 2,231 559 

Blood-brain barrier permeability BBB binary 2,030 (1,551/479) 1,624 406 

Metabolism 
CYP-P450 inhibition (CYP2D6) CYP2D6 

binary 
13,130(2,514/10,616) 10,504 2,626 

CYP-P450 inhibition (CYP3A4) CYP3A4 12,328 (5,110/7,218) 9,861 2,467 
CYP-P450 inhibition (CYP2C9) CYP2C9 12,092 (4,045/8,047) 9,673 2,419 

Toxicity 

Lethal dose 50 LD50 log(1/mol/kg) 7,385 5,907 1,478 
Human ether-à-go-go hERG 

binary 

655 (451/204) 523 132 

Mutagenicity AMES 7,278 (3,974/3,304) 5,821 1,457 

Drug-induced liver injury DILI 475 (236/239) 379 96 
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Table 2. Results of the SAGE Models for the Goal-Directed Benchmarks in GuacaMol 

Task Target 
Compound 

SMILES 
LSTMa 

SMILES 
GAa 

M100 
(GEGL) M75/V20/B05 M50/V45/B05 M25/V70/B05 

Rediscovery 
Celecoxib 0.609 0.506 1.000  1.000  1.000  1.000  

Troglitazone 0.465 0.333 1.000  1.000  1.000  1.000  
Thiothixene 0.544 0.433 1.000  1.000  1.000  1.000  

Similarity 
Aripiprazole 0.740 0.609 1.000  1.000  1.000  1.000  

Albuterol 0.835 0.644 1.000  1.000  1.000  1.000  
Mestranol 0.822 0.466 1.000  1.000  1.000  1.000  

Isomer 
C11H24 0.716 0.872 1.000  1.000  1.000  1.000  

C9H10N2O2PF2Cl 0.738 0.769 1.000  1.000  1.000  0.984  

Multiple 
Property 

Optimization 

Fexofenadine 0.794 0.752 1.000  1.000  1.000  1.000  
Ranolazine 0.799 0.758 0.948  0.948  0.955  0.951  
Perindopril 0.556 0.519 0.848  0.882  0.845  0.883  
Amlodipine 0.690 0.622 0.906  0.913  0.924  0.924  
Sitagliptin 0.494 0.470 0.912  0.926  0.929  0.925  
Zaleplon 0.540 0.510 0.788  0.838  0.795  0.792  

Valsartan SMARTS 0.334 0.027 0.999  1.000  0.997  0.999  
Decorator Hopping 0.912 0.624 1.000  1.000  1.000  1.000  
Scaffold Hopping 0.670 0.525 1.000  1.000  1.000  1.000  

Total 11.258 9.440 16.401  16.507  16.443  16.458  
M is a mutate operator, V is a virtual synthesis operator, and B is a bridged bicyclic ring operator 
a without the ranking-based fine-tuning mechanism 
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Table 3. Results of Rediscovery and Similarity Tasks for Bridged Bicyclic Ring Structures 

Task Target 
Compound 

M100 
(GEGL) M75/V20/B05 M50/V45/B05 M25/V70/B05 

Rediscovery 

Ingenolmebutate 0.732 0.798 0.732 0.732 

Morphine 0.676 0.707 0.632 0.676 

Amantadine 1.000 1.000 1.000 1.000 

Rimantadine 1.000 1.000 1.000 1.000 

Vildagliptin 1.000 1.000 1.000 1.000 

Memantine 1.000 1.000 1.000 1.000 

Tromantadine 1.000 1.000 1.000 1.000 

Adapalene 1.000 1.000 1.000 1.000 

Saxagliptin 1.000 1.000 1.000 1.000 

Azaprophen 0.790 1.000 1.000 1.000 

Psiguadial A 0.767 0.787 0.787 0.798 

Similarity 

Ingenolmebutate 0.976 1.000 0.976 0.893 

Morphine 0.935 0.935 0.901 1.000 

Amantadine 0.918 0.918 0.913 0.912 

Rimantadine 1.000 1.000 1.000 1.000 

Vildagliptin 1.000 1.000 1.000 1.000 

Memantine 0.996 0.996 0.996 0.996 

Tromantadine 1.000 1.000 1.000 1.000 

Adapalene 1.000 1.000 1.000 1.000 

Saxagliptin 1.000 1.000 1.000 1.000 

Azaprophen 1.000 1.000 1.000 1.000 

Psiguadial A 1.000 1.000 1.000 1.000 

Total 20.790 21.141 20.937 21.007 

M is a mutate operator, V is a virtual synthesis operator, and B is a bridged bicyclic ring operator 
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Table 4. Performance metrics of the best-found QSAR models 

Name Task Metric Model Train Set Validation Set Test Set 

AChE 

 Target  
Specificity  

 AUC  MACCS+PCFP/RF  1.000 ± 0.000   0.968 ± 0.022  0.947  

 COX-2   AUC  MACCS+FCFP4/RF  1.000 ± 0.000   0.789 ± 0.104  0.818  

 PKCB   AUC  MACCS+FCFP4/RF  1.000 ± 0.000   0.941 ± 0.070  0.894  

 FGFR1   AUC  MACCS+ECFP6/RF  1.000 ± 0.000   0.954 ± 0.064  0.930  

 PTP1B   AUC  MACCS+PCFP/RF  1.000 ± 0.000   0.944 ± 0.069  0.947  

 MAOB   AUC  MACCS+ECFP6/RF  1.000 ± 0.000   0.901 ± 0.085  0.842  

Caco2 
Absorption 

MAE MACCS+FCFP4/RF 0.125 ± 0.002 0.391 ± 0.047 0.348 

HIA AUC MACCS+PCFP/XGB 0.988 ± 0.002 0.935 ± 0.055 0.889 

Pgp AUC MACCS+FCFP4/RF 1.000 ± 0.000 0.900 ± 0.049 0.874 

BBB Distribution AUC MACCS+FCFP4/XGB 0.967 ± 0.002 0.878 ± 0.041 0.807 

PPBR MAE MACCS+FCFP4/RF 3.736 ± 0.088 10.926 ± 1.414 9.126 

CYP2D6 
Metabolism 

AUC MACCS+FCFP4/LGBM 0.858 ± 0.002 0.820 ± 0.016 0.795 

CYP3A4 AUC MACCS+FCFP4/XGB 0.925 ± 0.002 0.854 ± 0.030 0.811 

CYP2C9 AUC MACCS+PCFP/LGBM 0.865 ± 0.002 0.834 ± 0.014 0.795 

LD50 

Toxicity 

MAE MACCS+PCFP/RF 0.154 ± 0.001 0.450 ± 0.047 0.575 

hERG AUC MACCS+FCFP4/RF 1.000 ± 0.000 0.820 ± 0.069 0.717 

AMES AUC MACCS+FCFP4/RF 1.000 ± 0.000 0.822 ± 0.064 0.776 

DILI AUC MACCS+FCFP4/XGB 0.965 ± 0.004 0.854 ± 0.082 0.861 
 

Supporting Information for 

The supporting information for ‘Development of Scoring-Assisted Generative Exploration (SAGE) 

and Its Application to Dual Inhibitor Design for Acetylcholinesterase and Monoamine Oxidase B’ 

includes Table S1 for hyperparameter tuning procedure, Table S2 for pre-trained models, Table S3-S4 

for QSAR models for target specificity tasks, Table S5-S6 for QSAR models for ADME/T regression 

tasks, and Table S7-S8 for QSAR models for ADME/T classification tasks. 

     In this study, there are many abbreviations as follows.2D, Two dimension; AChE, 

Acetylcholinesterase; AD, Alzheimer’s disease; ADME, Absorption, distribution, metabolism, and 

excretion; ADME/T, Absorption, distribution, metabolism, excretion, and toxicity; APP, Amyloid 

precursor protein; BBB, Blood brain barrier permeability; Caco2, Caco-2 membrane permeability; 

COX-2, Cyclooxygenase-2; CYP, Cytochrome P450; DILI, Drug-induced liver injury; DINGOS, 

Design of innovative new chemical entities generated by optimization strategies; DNN, Deep neural 

network;ECFP, Extended-connectivity fingerprint; FCFP, Function-class fingerprint; FGFR1, 
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Fibroblast growth factor receptor 1; GA, Genetic algorithms; GBM, Gradient boosting machine; 

GEGL, Genetic expert-guided learning; hERG, Human ether-à-go-go; HIA, Human intestinal 

absorption; LD50, Lethal dose 50; LGBM, Light gradient boosting machine; LSTM, Long-short term 

memory; MACCS, Molecular access system; MAO, Monoamine oxidase; MAOB, Monoamine 

oxidase B; MPO, Multiple property optimization; PCFP, PubChem fingerprint; PDB, Protein data 

bank; Pgp, P-glycoprotein inhibition; PKCB, Protein kinase C beta; PPBR, Human plasma protein 

binding rate; PTP1B, Protein-tyrosine phosphatase 1B; QED, Quantitative estimate of drug-likeness; 

QSAR, Quantitative structure-activity relationship; QSPR, Quantitative structure-property 

relationship; RAscore, Retrosynthetic accessibility score; RF, Random forest; RMSD, root-mean-

square deviation; SAGE, Scoring-Assisted Generative Exploration; SMILES, Simplified molecular-

input line-entry system; TPSA, Topological polar surface area; XGB, Extreme gradient boosting. 
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Method Tuning parameters Fixed parameters

GBM n_estimators = 50, 100, 500, 1000, 1500, 2000, 2500, 3000 if it is classification task,
max_features = 'auto', 'sqrt', 'log2' class_weight = 'balanced' 

max_depth = 10, 15
learning_rate = 0.01, 0.05

LGBM n_estimators = 50, 100, 500, 1000, 1500, 2000, 2500, 3000 if it is classification task,
learning_rate = 0.01, 0.05 class_weight = 'balanced' 

RF n_estimators = 50, 100, 500, 1000, 1500, 2000, 2500, 3000 if it is classification task,
max_features = 'auto', 'sqrt', 'log2' class_weight = 'balanced' 

XGB n_estimators = 50, 100, 500, 1000, 1500, 2000, 2500, 3000 gamma = 0
max_depth = 10, 15 min_child_weight = 1
learning_rate = 0.01, 0.05 subsample = 0.5

Table S1. Hyperparameter Setting for Tuning Procedure
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Dataset Samples Validity Uniqueness Unique_1k Novelty IntDiv_1 IntDiv_2
1,000 0.909 0.998 - 0.750 0.719 0.610
3,000 0.904 0.999 0.998 0.762 0.710 0.600
5,000 0.902 0.999 1.000 0.758 0.709 0.597
1,000 0.969 1.000 - 0.899 0.818 0.754
3,000 0.963 1.000 1.000 0.898 0.808 0.737
5,000 0.964 1.000 1.000 0.898 0.809 0.739
1,000 0.939 1.000 - 0.996 0.769 0.675
3,000 0.925 1.000 1.000 0.995 0.748 0.645
5,000 0.929 1.000 1.000 0.995 0.754 0.654
1,000 0.891 1.000 - 0.497 0.688 0.573
3,000 0.895 0.998 1.000 0.538 0.694 0.580
5,000 0.890 0.992 1.000 0.511 0.686 0.571

ChEMBL24

Synthetics

ZINC

ZINC-NP

Table S2. Performance Metrics of Pre-trained Models in this work
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Task Descriptor Method Train AUC Validation AUC Test AUC
MACCS+ECFP6 GBM 1.000 ± 0.000 0.922 ± 0.047 0.925
MACCS+ECFP6 LGBM 0.987 ± 0.002 0.937 ± 0.035 0.931
MACCS+ECFP6 RF 1.000 ± 0.000 0.974 ± 0.014 0.931
MACCS+ECFP6 XGB 0.995 ± 0.001 0.948 ± 0.027 0.936
MACCS+FCFP4 GBM 0.999 ± 0.001 0.845 ± 0.135 0.936
MACCS+FCFP4 LGBM 0.984 ± 0.003 0.923 ± 0.050 0.941
MACCS+FCFP4 RF 1.000 ± 0.000 0.974 ± 0.014 0.936
MACCS+FCFP4 XGB 0.993 ± 0.001 0.948 ± 0.031 0.936
MACCS+PCFP GBM 1.000 ± 0.000 0.876 ± 0.051 0.947
MACCS+PCFP LGBM 0.978 ± 0.005 0.922 ± 0.039 0.947
MACCS+PCFP RF 1.000 ± 0.000 0.968 ± 0.022 0.947
MACCS+PCFP XGB 0.992 ± 0.001 0.944 ± 0.026 0.942

MACCS+ECFP6 GBM 0.998 ± 0.001 0.697 ± 0.084 0.812
MACCS+ECFP6 LGBM 0.927 ± 0.013 0.734 ± 0.111 0.795
MACCS+ECFP6 RF 1.000 ± 0.000 0.780 ± 0.116 0.812
MACCS+ECFP6 XGB 0.972 ± 0.003 0.774 ± 0.120 0.789
MACCS+FCFP4 GBM 0.996 ± 0.003 0.716 ± 0.111 0.790
MACCS+FCFP4 LGBM 0.936 ± 0.006 0.706 ± 0.121 0.789

MACCS+FCFP4 RF 1.000 ± 0.000 0.789 ± 0.104 0.818
MACCS+FCFP4 XGB 0.971 ± 0.001 0.766 ± 0.117 0.801
MACCS+PCFP GBM 0.997 ± 0.002 0.716 ± 0.134 0.795
MACCS+PCFP LGBM 0.937 ± 0.007 0.740 ± 0.131 0.801
MACCS+PCFP RF 1.000 ± 0.000 0.771 ± 0.112 0.795
MACCS+PCFP XGB 0.967 ± 0.002 0.777 ± 0.120 0.812

MACCS+ECFP6 GBM 1.000 ± 0.000 0.837 ± 0.103 0.880
MACCS+ECFP6 LGBM 0.968 ± 0.008 0.899 ± 0.097 0.882
MACCS+ECFP6 RF 1.000 ± 0.000 0.919 ± 0.100 0.859
MACCS+ECFP6 XGB 0.994 ± 0.002 0.897 ± 0.127 0.917
MACCS+FCFP4 GBM 1.000 ± 0.000 0.875 ± 0.126 0.931
MACCS+FCFP4 LGBM 0.963 ± 0.008 0.854 ± 0.134 0.896

MACCS+FCFP4 RF 1.000 ± 0.000 0.941 ± 0.070 0.894
MACCS+FCFP4 XGB 0.991 ± 0.002 0.901 ± 0.120 0.880
MACCS+PCFP GBM 1.000 ± 0.000 0.821 ± 0.139 0.845
MACCS+PCFP LGBM 0.968 ± 0.010 0.882 ± 0.110 0.861
MACCS+PCFP RF 1.000 ± 0.000 0.945 ± 0.065 0.861
MACCS+PCFP XGB 0.992 ± 0.003 0.924 ± 0.070 0.864

Table S3. Performance Metrics of QSAR Models for Target Specificity Tasks (continue)

AChE

COX-2

PKCB
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Task Descriptor Method Train AUC Validation AUC Test AUC
MACCS+ECFP6 GBM 1.000 ± 0.000 0.823 ± 0.160 0.947
MACCS+ECFP6 LGBM 0.971 ± 0.005 0.880 ± 0.183 0.877
MACCS+ECFP6 RF 1.000 ± 0.000 0.954 ± 0.064 0.930
MACCS+ECFP6 XGB 0.989 ± 0.002 0.921 ± 0.113 0.912
MACCS+FCFP4 GBM 1.000 ± 0.000 0.866 ± 0.153 0.947
MACCS+FCFP4 LGBM 0.966 ± 0.006 0.893 ± 0.145 0.929
MACCS+FCFP4 RF 1.000 ± 0.000 0.926 ± 0.076 0.930
MACCS+FCFP4 XGB 0.986 ± 0.004 0.924 ± 0.104 0.913
MACCS+PCFP GBM 1.000 ± 0.000 0.885 ± 0.103 0.895
MACCS+PCFP LGBM 0.966 ± 0.005 0.868 ± 0.103 0.895
MACCS+PCFP RF 1.000 ± 0.000 0.939 ± 0.066 0.895
MACCS+PCFP XGB 0.985 ± 0.003 0.897 ± 0.103 0.895

MACCS+ECFP6 GBM 1.000 ± 0.000 0.793 ± 0.078 0.962
MACCS+ECFP6 LGBM 0.960 ± 0.012 0.684 ± 0.223 0.907
MACCS+ECFP6 RF 1.000 ± 0.000 0.931 ± 0.099 0.923
MACCS+ECFP6 XGB 0.994 ± 0.002 0.841 ± 0.158 0.926
MACCS+FCFP4 GBM 1.000 ± 0.000 0.786 ± 0.099 0.926
MACCS+FCFP4 LGBM 0.967 ± 0.011 0.738 ± 0.195 0.926
MACCS+FCFP4 RF 1.000 ± 0.000 0.930 ± 0.070 0.945
MACCS+FCFP4 XGB 0.991 ± 0.002 0.847 ± 0.160 0.942
MACCS+PCFP GBM 1.000 ± 0.000 0.919 ± 0.078 0.849
MACCS+PCFP LGBM 0.977 ± 0.009 0.829 ± 0.172 0.868
MACCS+PCFP RF 1.000 ± 0.000 0.944 ± 0.069 0.947
MACCS+PCFP XGB 0.994 ± 0.002 0.907 ± 0.105 0.885

MACCS+ECFP6 GBM 1.000 ± 0.000 0.752 ± 0.128 0.842
MACCS+ECFP6 LGBM 0.943 ± 0.008 0.780 ± 0.182 0.783
MACCS+ECFP6 RF 1.000 ± 0.000 0.901 ± 0.085 0.842
MACCS+ECFP6 XGB 0.983 ± 0.003 0.846 ± 0.123 0.823
MACCS+FCFP4 GBM 1.000 ± 0.000 0.732 ± 0.163 0.822
MACCS+FCFP4 LGBM 0.946 ± 0.014 0.809 ± 0.135 0.803
MACCS+FCFP4 RF 1.000 ± 0.000 0.885 ± 0.104 0.842
MACCS+FCFP4 XGB 0.977 ± 0.003 0.852 ± 0.129 0.823
MACCS+PCFP GBM 1.000 ± 0.000 0.790 ± 0.120 0.822
MACCS+PCFP LGBM 0.941 ± 0.012 0.802 ± 0.103 0.725
MACCS+PCFP RF 1.000 ± 0.000 0.881 ± 0.106 0.822
MACCS+PCFP XGB 0.975 ± 0.003 0.848 ± 0.100 0.784

MAOB

Table S3. Performance Metrics of QSAR Models for Target Specificity Tasks (continue)

PTP1B

FGFR1
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Task Descriptor Method Optimal Hyperarameters
MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 1000}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 3000}

MACCS+ECFP6 RF  {'max_features': 'log2', 'n_estimators': 3000}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 2500}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 1000}

MACCS+FCFP4 LGBM  {'learning_rate': 0.05, 'n_estimators': 2500}

MACCS+FCFP4 RF  {'max_features': 'log2', 'n_estimators': 1000}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1500}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'sqrt', 'n_estimators': 100}

MACCS+PCFP LGBM  {'learning_rate': 0.05, 'n_estimators': 500}

MACCS+PCFP RF  {'max_features': 'log2', 'n_estimators': 500}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 15, 'n_estimators': 1500}

MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 100}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+ECFP6 RF  {'max_features': 'log2', 'n_estimators': 1500}

MACCS+ECFP6 XGB  {'learning_rate': 0.05, 'max_depth': 10, 'n_estimators': 500}

MACCS+FCFP4 GBM  {'learning_rate': 0.05, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 50}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 1000}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 100}

MACCS+FCFP4 XGB  {'learning_rate': 0.05, 'max_depth': 15, 'n_estimators': 100}

MACCS+PCFP GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 100}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 1000}

MACCS+PCFP RF  {'max_features': 'log2', 'n_estimators': 500}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 500}

MACCS+ECFP6 GBM  {'learning_rate': 0.05, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 500}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 2500}

MACCS+ECFP6 RF  {'max_features': 'log2', 'n_estimators': 100}

MACCS+ECFP6 XGB  {'learning_rate': 0.05, 'max_depth': 10, 'n_estimators': 500}

MACCS+FCFP4 GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 500}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 1500}

MACCS+FCFP4 RF  {'max_features': 'log2', 'n_estimators': 3000}

MACCS+FCFP4 XGB  {'learning_rate': 0.05, 'max_depth': 10, 'n_estimators': 2500}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 1000}

MACCS+PCFP LGBM  {'learning_rate': 0.05, 'n_estimators': 2500}

MACCS+PCFP RF  {'max_features': 'log2', 'n_estimators': 2000}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 2500}

Table S4. Optimal Hyperparameters of QSAR Models for Target Specificity Tasks (continue)

AChE

COX-2

PKCB
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Task Descriptor Method Optimal Hyperarameters
MACCS+ECFP6 GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 100}

MACCS+ECFP6 LGBM  {'learning_rate': 0.05, 'n_estimators': 50}

MACCS+ECFP6 RF  {'max_features': 'auto', 'n_estimators': 50}

MACCS+ECFP6 XGB  {'learning_rate': 0.05, 'max_depth': 10, 'n_estimators': 100}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 100}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 2500}

MACCS+FCFP4 RF  {'max_features': 'log2', 'n_estimators': 2500}

MACCS+FCFP4 XGB  {'learning_rate': 0.05, 'max_depth': 10, 'n_estimators': 50}

MACCS+PCFP GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 50}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 3000}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 50}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1000}

MACCS+ECFP6 GBM  {'learning_rate': 0.05, 'max_depth': 15, 'max_features': 'sqrt', 'n_estimators': 50}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 3000}

MACCS+ECFP6 RF  {'max_features': 'log2', 'n_estimators': 100}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 3000}

MACCS+FCFP4 GBM  {'learning_rate': 0.05, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 3000}

MACCS+FCFP4 LGBM  {'learning_rate': 0.05, 'n_estimators': 500}

MACCS+FCFP4 RF  {'max_features': 'log2', 'n_estimators': 50}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 2500}

MACCS+PCFP GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'auto', 'n_estimators': 3000}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 1000}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 1000}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1000}

MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 50}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 1000}

MACCS+ECFP6 RF  {'max_features': 'log2', 'n_estimators': 100}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1000}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 50}

MACCS+FCFP4 LGBM  {'learning_rate': 0.05, 'n_estimators': 100}

MACCS+FCFP4 RF  {'max_features': 'log2', 'n_estimators': 2500}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 2500}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 50}

MACCS+PCFP LGBM  {'learning_rate': 0.05, 'n_estimators': 100}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 1500}

MACCS+PCFP XGB  {'learning_rate': 0.05, 'max_depth': 10, 'n_estimators': 100}

Table S4. Optimal Hyperparameters of QSAR Models for Target Specificity Tasks (continue)

PTP1B

MAOB

FGFR1
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Task Descriptor Method Train MAE Validation MAE Test MAE
MACCS+ECFP6 GBM 0.419 ± 0.011 0.538 ± 0.078 0.405
MACCS+ECFP6 LGBM 0.490 ± 0.008 0.538 ± 0.080 0.387
MACCS+ECFP6 RF 0.130 ± 0.001 0.414 ± 0.052 0.383
MACCS+ECFP6 XGB 3.471 ± 0.007 3.471 ± 0.087 0.352
MACCS+FCFP4 GBM 0.415 ± 0.007 0.502 ± 0.082 0.335
MACCS+FCFP4 LGBM 0.480 ± 0.006 0.521 ± 0.079 0.336

MACCS+FCFP4 RF 0.125 ± 0.002 0.391 ± 0.047 0.348
MACCS+FCFP4 XGB 3.471 ± 0.008 3.471 ± 0.085 0.325
MACCS+PCFP GBM 0.411 ± 0.009 0.529 ± 0.072 0.316
MACCS+PCFP LGBM 0.481 ± 0.008 0.527 ± 0.081 0.325
MACCS+PCFP RF 0.125 ± 0.002 0.410 ± 0.056 0.339
MACCS+PCFP XGB 3.471 ± 0.007 3.471 ± 0.086 0.305

MACCS+ECFP6 GBM 10.014 ± 0.232 12.391 ± 1.356 9.387
MACCS+ECFP6 LGBM 11.278 ± 0.208 12.266 ± 1.1 9.718
MACCS+ECFP6 RF 3.781 ± 0.080 11.116 ± 1.279 9.760
MACCS+ECFP6 XGB 52.386 ± 0.157 52.809 ± 1.87 9.749
MACCS+FCFP4 GBM 10.478 ± 0.188 12.297 ± 1.22 9.296
MACCS+FCFP4 LGBM 11.325 ± 0.211 12.304 ± 1.199 8.746

MACCS+FCFP4 RF 3.736 ± 0.088 10.926 ± 1.414 9.126
MACCS+FCFP4 XGB 52.332 ± 0.148 52.722 ± 1.979 8.974
MACCS+PCFP GBM 9.611 ± 0.191 12.139 ± 1.405 9.191
MACCS+PCFP LGBM 11.255 ± 0.219 12.283 ± 1.278 8.317
MACCS+PCFP RF 3.748 ± 0.086 10.940 ± 1.484 9.470
MACCS+PCFP XGB 52.397 ± 0.153 52.747 ± 1.838 8.989

MACCS+ECFP6 GBM 0.541 ± 0.004 0.600 ± 0.052 0.605
MACCS+ECFP6 LGBM 0.594 ± 0.006 0.612 ± 0.055 0.626
MACCS+ECFP6 RF 0.161 ± 0.001 0.467 ± 0.047 0.611
MACCS+ECFP6 XGB 1.218 ± 0.009 1.227 ± 0.093 0.599
MACCS+FCFP4 GBM 0.541 ± 0.004 0.596 ± 0.05 0.568
MACCS+FCFP4 LGBM 0.594 ± 0.005 0.611 ± 0.055 0.581
MACCS+FCFP4 RF 0.158 ± 0.002 0.459 ± 0.048 0.585
MACCS+FCFP4 XGB 1.218 ± 0.009 1.227 ± 0.094 0.581
MACCS+PCFP GBM 0.533 ± 0.004 0.592 ± 0.051 0.565
MACCS+PCFP LGBM 0.592 ± 0.005 0.613 ± 0.055 0.578
MACCS+PCFP RF 0.154 ± 0.001 0.450 ± 0.047 0.575
MACCS+PCFP XGB 1.223 ± 0.009 1.236 ± 0.096 0.574

LD50

Caco2

PPBR

Table S5. Performance Metrics of QSAR Models for ADME/T Regression Tasks
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Task Descriptor Method Optimal Hyperarameters
MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 1500}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 1000}

MACCS+ECFP6 RF  {'max_features': 'auto', 'n_estimators': 1000}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1500}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 1500}

MACCS+FCFP4 LGBM  {'learning_rate': 0.05, 'n_estimators': 500}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 1500}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1000}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 2500}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 1500}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 2000}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 3000}

MACCS+ECFP6 GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'auto', 'n_estimators': 1000}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+ECFP6 RF  {'max_features': 'auto', 'n_estimators': 2500}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 3000}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'auto', 'n_estimators': 1500}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 1000}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 500}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 2000}

MACCS+PCFP GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 500}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 1000}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 2000}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1500}

MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'sqrt', 'n_estimators': 3000}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 2500}

MACCS+ECFP6 RF  {'max_features': 'auto', 'n_estimators': 3000}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 15, 'n_estimators': 2500}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'sqrt', 'n_estimators': 2500}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 3000}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 3000}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 15, 'n_estimators': 2000}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 3000}

MACCS+PCFP LGBM  {'learning_rate': 0.05, 'n_estimators': 1000}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 2000}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 2000}

Table S6. Optimal Hyperparameters of QSAR Models for ADME/T Regression Tasks

Caco2

PPBR

LD50
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Task Descriptor Method Train AUC Validation AUC Test AUC
MACCS+ECFP6 GBM 1.000 ± 0.000 0.876 ± 0.116 0.611
MACCS+ECFP6 LGBM 0.976 ± 0.005 0.853 ± 0.094 0.915
MACCS+ECFP6 RF 1.000 ± 0.000 0.929 ± 0.067 0.667
MACCS+ECFP6 XGB 0.994 ± 0.001 0.886 ± 0.097 0.852
MACCS+FCFP4 GBM 0.999 ± 0.003 0.846 ± 0.151 0.722
MACCS+FCFP4 LGBM 0.969 ± 0.009 0.888 ± 0.058 0.878
MACCS+FCFP4 RF 1.000 ± 0.000 0.966 ± 0.035 0.778
MACCS+FCFP4 XGB 0.991 ± 0.001 0.915 ± 0.089 0.796
MACCS+PCFP GBM 1.000 ± 0.001 0.915 ± 0.081 0.611
MACCS+PCFP LGBM 0.974 ± 0.006 0.871 ± 0.081 0.939
MACCS+PCFP RF 1.000 ± 0.000 0.927 ± 0.062 0.648
MACCS+PCFP XGB 0.988 ± 0.002 0.935 ± 0.055 0.889
MACCS+ECFP6 GBM 1.000 ± 0.000 0.829 ± 0.082 0.858
MACCS+ECFP6 LGBM 0.970 ± 0.003 0.869 ± 0.080 0.833
MACCS+ECFP6 RF 1.000 ± 0.000 0.909 ± 0.037 0.858
MACCS+ECFP6 XGB 0.987 ± 0.001 0.903 ± 0.060 0.849
MACCS+FCFP4 GBM 0.998 ± 0.001 0.832 ± 0.078 0.849
MACCS+FCFP4 LGBM 0.966 ± 0.003 0.872 ± 0.096 0.858
MACCS+FCFP4 RF 1.000 ± 0.000 0.900 ± 0.049 0.874
MACCS+FCFP4 XGB 0.983 ± 0.002 0.899 ± 0.072 0.862
MACCS+PCFP GBM 0.999 ± 0.000 0.833 ± 0.079 0.866
MACCS+PCFP LGBM 0.965 ± 0.003 0.871 ± 0.092 0.797
MACCS+PCFP RF 1.000 ± 0.000 0.895 ± 0.070 0.866
MACCS+PCFP XGB 0.981 ± 0.001 0.892 ± 0.078 0.874

MACCS+ECFP6 GBM 0.996 ± 0.002 0.820 ± 0.098 0.749
MACCS+ECFP6 LGBM 0.963 ± 0.002 0.871 ± 0.048 0.787
MACCS+ECFP6 RF 1.000 ± 0.000 0.885 ± 0.056 0.754
MACCS+ECFP6 XGB 0.980 ± 0.002 0.868 ± 0.051 0.777
MACCS+FCFP4 GBM 0.981 ± 0.007 0.794 ± 0.059 0.775
MACCS+FCFP4 LGBM 0.959 ± 0.003 0.855 ± 0.043 0.78
MACCS+FCFP4 RF 1.000 ± 0.000 0.893 ± 0.035 0.766
MACCS+FCFP4 XGB 0.967 ± 0.002 0.878 ± 0.041 0.807
MACCS+PCFP GBM 0.995 ± 0.003 0.801 ± 0.071 0.788
MACCS+PCFP LGBM 0.960 ± 0.004 0.845 ± 0.073 0.807
MACCS+PCFP RF 1.000 ± 0.000 0.892 ± 0.044 0.778
MACCS+PCFP XGB 0.972 ± 0.002 0.885 ± 0.057 0.776

Table S7. Performance Metrics of QSAR Models for ADME/T Classification Tasks (continue)
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Task Descriptor Method Train AUC Validation AUC Test AUC
MACCS+ECFP6 GBM 0.962 ± 0.006 0.784 ± 0.022 0.697
MACCS+ECFP6 LGBM 0.852 ± 0.002 0.800 ± 0.016 0.779
MACCS+ECFP6 RF 1.000 ± 0.000 0.842 ± 0.016 0.629
MACCS+ECFP6 XGB 0.945 ± 0.001 0.827 ± 0.013 0.709
MACCS+FCFP4 GBM 0.942 ± 0.003 0.808 ± 0.022 0.711
MACCS+FCFP4 LGBM 0.858 ± 0.002 0.820 ± 0.016 0.795
MACCS+FCFP4 RF 1.000 ± 0.000 0.847 ± 0.018 0.684
MACCS+FCFP4 XGB 0.913 ± 0.002 0.830 ± 0.014 0.731
MACCS+PCFP GBM 0.969 ± 0.002 0.799 ± 0.014 0.703
MACCS+PCFP LGBM 0.853 ± 0.003 0.802 ± 0.015 0.791
MACCS+PCFP RF 1.000 ± 0.000 0.833 ± 0.019 0.677
MACCS+PCFP XGB 0.938 ± 0.002 0.833 ± 0.015 0.725

MACCS+ECFP6 GBM 0.953 ± 0.003 0.823 ± 0.033 0.796
MACCS+ECFP6 LGBM 0.860 ± 0.002 0.828 ± 0.038 0.794
MACCS+ECFP6 RF 1.000 ± 0.000 0.864 ± 0.022 0.775
MACCS+ECFP6 XGB 0.929 ± 0.002 0.849 ± 0.030 0.801
MACCS+FCFP4 GBM 0.946 ± 0.003 0.827 ± 0.027 0.805
MACCS+FCFP4 LGBM 0.863 ± 0.003 0.833 ± 0.038 0.800
MACCS+FCFP4 RF 1.000 ± 0.000 0.859 ± 0.027 0.776
MACCS+FCFP4 XGB 0.925 ± 0.002 0.854 ± 0.030 0.811
MACCS+PCFP GBM 0.964 ± 0.002 0.820 ± 0.025 0.781
MACCS+PCFP LGBM 0.863 ± 0.003 0.830 ± 0.038 0.788
MACCS+PCFP RF 1.000 ± 0.000 0.847 ± 0.026 0.758
MACCS+PCFP XGB 0.943 ± 0.002 0.856 ± 0.030 0.790

MACCS+ECFP6 GBM 0.957 ± 0.002 0.808 ± 0.016 0.781
MACCS+ECFP6 LGBM 0.853 ± 0.002 0.811 ± 0.017 0.808
MACCS+ECFP6 RF 1.000 ± 0.000 0.857 ± 0.011 0.711
MACCS+ECFP6 XGB 0.931 ± 0.002 0.840 ± 0.012 0.781
MACCS+FCFP4 GBM 0.932 ± 0.003 0.813 ± 0.018 0.772
MACCS+FCFP4 LGBM 0.849 ± 0.004 0.818 ± 0.019 0.799
MACCS+FCFP4 RF 1.000 ± 0.000 0.859 ± 0.014 0.758
MACCS+FCFP4 XGB 0.913 ± 0.003 0.842 ± 0.012 0.787
MACCS+PCFP GBM 0.960 ± 0.003 0.830 ± 0.014 0.760
MACCS+PCFP LGBM 0.865 ± 0.002 0.834 ± 0.014 0.795
MACCS+PCFP RF 1.000 ± 0.000 0.853 ± 0.015 0.747
MACCS+PCFP XGB 0.937 ± 0.001 0.858 ± 0.012 0.765

Table S7. Performance Metrics of QSAR Models for ADME/T Classification Tasks (continue)
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Task Descriptor Method Train AUC Validation AUC Test AUC
MACCS+ECFP6 GBM 0.997 ± 0.003 0.676 ± 0.102 0.669
MACCS+ECFP6 LGBM 0.942 ± 0.008 0.780 ± 0.071 0.668
MACCS+ECFP6 RF 1.000 ± 0.000 0.823 ± 0.057 0.67
MACCS+ECFP6 XGB 0.972 ± 0.002 0.807 ± 0.064 0.713
MACCS+FCFP4 GBM 0.995 ± 0.004 0.732 ± 0.075 0.708
MACCS+FCFP4 LGBM 0.940 ± 0.008 0.810 ± 0.081 0.718
MACCS+FCFP4 RF 1.000 ± 0.000 0.820 ± 0.069 0.717
MACCS+FCFP4 XGB 0.967 ± 0.003 0.832 ± 0.060 0.699
MACCS+PCFP GBM 0.998 ± 0.002 0.739 ± 0.086 0.694
MACCS+PCFP LGBM 0.945 ± 0.004 0.781 ± 0.113 0.679
MACCS+PCFP RF 1.000 ± 0.000 0.817 ± 0.062 0.651
MACCS+PCFP XGB 0.962 ± 0.002 0.835 ± 0.088 0.69

MACCS+ECFP6 GBM 0.963 ± 0.006 0.775 ± 0.037 0.778
MACCS+ECFP6 LGBM 0.874 ± 0.003 0.784 ± 0.048 0.761
MACCS+ECFP6 RF 1.000 ± 0.000 0.819 ± 0.052 0.777
MACCS+ECFP6 XGB 0.934 ± 0.003 0.808 ± 0.045 0.776
MACCS+FCFP4 GBM 0.953 ± 0.003 0.773 ± 0.053 0.758
MACCS+FCFP4 LGBM 0.875 ± 0.002 0.796 ± 0.044 0.758
MACCS+FCFP4 RF 1.000 ± 0.000 0.822 ± 0.064 0.776
MACCS+FCFP4 XGB 0.929 ± 0.002 0.823 ± 0.046 0.771
MACCS+PCFP GBM 0.954 ± 0.005 0.791 ± 0.043 0.768
MACCS+PCFP LGBM 0.880 ± 0.004 0.796 ± 0.039 0.774
MACCS+PCFP RF 1.000 ± 0.000 0.817 ± 0.068 0.772
MACCS+PCFP XGB 0.931 ± 0.003 0.820 ± 0.046 0.77

MACCS+ECFP6 GBM 1.000 ± 0.000 0.719 ± 0.098 0.808
MACCS+ECFP6 LGBM 0.938 ± 0.005 0.807 ± 0.098 0.789
MACCS+ECFP6 RF 1.000 ± 0.000 0.868 ± 0.074 0.796
MACCS+ECFP6 XGB 0.969 ± 0.004 0.859 ± 0.086 0.809
MACCS+FCFP4 GBM 1.000 ± 0.000 0.734 ± 0.076 0.833
MACCS+FCFP4 LGBM 0.944 ± 0.006 0.812 ± 0.092 0.843
MACCS+FCFP4 RF 1.000 ± 0.000 0.862 ± 0.071 0.841
MACCS+FCFP4 XGB 0.965 ± 0.004 0.854 ± 0.082 0.861
MACCS+PCFP GBM 1.000 ± 0.001 0.721 ± 0.113 0.766
MACCS+PCFP LGBM 0.941 ± 0.007 0.783 ± 0.100 0.787
MACCS+PCFP RF 1.000 ± 0.000 0.841 ± 0.095 0.787
MACCS+PCFP XGB 0.966 ± 0.004 0.846 ± 0.082 0.799

DILI

hERG
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Table S7. Performance Metrics of QSAR Models for ADME/T Classification Tasks (continue)
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Task Descriptor Method Optimal Hyperarameters
MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 1000}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 2000}

MACCS+ECFP6 RF  {'max_features': 'auto', 'n_estimators': 500}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1000}

MACCS+FCFP4 GBM  {'learning_rate': 0.05, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 100}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 50}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 500}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 100}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 1000}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 500}

MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'sqrt', 'n_estimators': 500}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+ECFP6 RF  {'max_features': 'auto', 'n_estimators': 1000}

MACCS+ECFP6 XGB  {'learning_rate': 0.05, 'max_depth': 10, 'n_estimators': 100}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 1000}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 3000}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 15, 'n_estimators': 500}

MACCS+PCFP GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 100}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 500}

MACCS+PCFP XGB  {'learning_rate': 0.05, 'max_depth': 15, 'n_estimators': 1000}

MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 500}

MACCS+ECFP6 LGBM  {'learning_rate': 0.05, 'n_estimators': 1500}

MACCS+ECFP6 RF  {'max_features': 'auto', 'n_estimators': 3000}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1000}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 1000}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+FCFP4 RF  {'max_features': 'log2', 'n_estimators': 2000}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 15, 'n_estimators': 1000}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 2500}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 2500}

MACCS+PCFP XGB  {'learning_rate': 0.05, 'max_depth': 10, 'n_estimators': 100}

Table S8. Optimal Hyperparameters of QSAR Models for ADME/T Classification Tasks (continue)
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Task Descriptor Method Optimal Hyperarameters
MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 2000}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 1500}

MACCS+ECFP6 RF  {'max_features': 'log2', 'n_estimators': 2000}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 15, 'n_estimators': 1500}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 1500}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 1500}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 3000}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1500}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 1000}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 1500}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 3000}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1500}

MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 3000}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 2000}

MACCS+ECFP6 RF  {'max_features': 'auto', 'n_estimators': 2500}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 15, 'n_estimators': 3000}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 2500}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 2000}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 1500}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 2000}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 1500}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 1500}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 3000}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1500}

MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 3000}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 3000}

MACCS+ECFP6 RF  {'max_features': 'log2', 'n_estimators': 3000}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 15, 'n_estimators': 1500}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 3000}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 2500}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 3000}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 2000}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 1500}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 2000}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 3000}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1500}

CYP2D6

Table S8. Optimal Hyperparameters of QSAR Models for ADME/T Classification Tasks (continue)
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Task Descriptor Method Optimal Hyperarameters
MACCS+ECFP6 GBM  {'learning_rate': 0.05, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 1500}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 1000}

MACCS+ECFP6 RF  {'max_features': 'log2', 'n_estimators': 2500}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 1000}

MACCS+FCFP4 GBM  {'learning_rate': 0.05, 'max_depth': 15, 'max_features': 'sqrt', 'n_estimators': 500}

MACCS+FCFP4 LGBM  {'learning_rate': 0.05, 'n_estimators': 50}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 1500}

MACCS+FCFP4 XGB  {'learning_rate': 0.05, 'max_depth': 10, 'n_estimators': 100}

MACCS+PCFP GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 2000}

MACCS+PCFP LGBM  {'learning_rate': 0.05, 'n_estimators': 3000}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 2500}

MACCS+PCFP XGB  {'learning_rate': 0.05, 'max_depth': 15, 'n_estimators': 50}

MACCS+ECFP6 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 1000}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+ECFP6 RF  {'max_features': 'auto', 'n_estimators': 3000}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 15, 'n_estimators': 500}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 500}

MACCS+FCFP4 LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+FCFP4 RF  {'max_features': 'auto', 'n_estimators': 1000}

MACCS+FCFP4 XGB  {'learning_rate': 0.01, 'max_depth': 15, 'n_estimators': 500}

MACCS+PCFP GBM  {'learning_rate': 0.01, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 500}

MACCS+PCFP LGBM  {'learning_rate': 0.05, 'n_estimators': 100}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 2000}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 500}

MACCS+ECFP6 GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 500}

MACCS+ECFP6 LGBM  {'learning_rate': 0.01, 'n_estimators': 500}

MACCS+ECFP6 RF  {'max_features': 'auto', 'n_estimators': 2000}

MACCS+ECFP6 XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 500}

MACCS+FCFP4 GBM  {'learning_rate': 0.01, 'max_depth': 15, 'max_features': 'log2', 'n_estimators': 50}

MACCS+FCFP4 LGBM  {'learning_rate': 0.05, 'n_estimators': 100}

MACCS+FCFP4 RF  {'max_features': 'log2', 'n_estimators': 1500}

MACCS+FCFP4 XGB  {'learning_rate': 0.05, 'max_depth': 15, 'n_estimators': 100}

MACCS+PCFP GBM  {'learning_rate': 0.05, 'max_depth': 10, 'max_features': 'log2', 'n_estimators': 50}

MACCS+PCFP LGBM  {'learning_rate': 0.01, 'n_estimators': 1000}

MACCS+PCFP RF  {'max_features': 'auto', 'n_estimators': 2500}

MACCS+PCFP XGB  {'learning_rate': 0.01, 'max_depth': 10, 'n_estimators': 500}

Table S8. Optimal Hyperparameters of QSAR Models for ADME/T Classification Tasks (continue)
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